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Radiation of a charged particle bunch moving along
a deep corrugated surface with a small period
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IPAC2] The equivalent boundary conditions

Q The equivalent boundary conditions (EBC)
can be used under condition [1]:
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[1] E.I. Nefedov and A.N. Sivov, Electrodynamics of periodic structures, Nauka, Moscow, Russia, (1977)
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IPAC21 The problem definition

0 N The velocity of the bunch:
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--------------------------- s V=Ve,V =V=cpf
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T, T I T T % The charge and current densities:
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The total field: I1= ﬁ(i) + ﬁ(r)
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Fig.2. The corrugated structure and the moving bunch. 1" - the «freex field
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The Helmholtz equation for the Fourier-transforms of the Hertz potential: {A + kg } I1, = —7 Jw
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IPAC21] The Hertz potential of the total field

The «forced» Hertz potential: TI") = e,
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The Fourier-transform of the bunch profile: &= py. j d{x($ )exp(—z 5 & j C=z-Vt
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The «free» Hertz potential: [ =11Ve +11e,
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Relations between the Fourier-transforms of B L L .
the electromagnetic field and the Hertz potential: E, = VdivIle + ki 1w, H e =—ikyrotIl,
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IPAC21 The «freey field
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ED B = (HD + 5O
The equivalent boundary conditions: ;Y v ( “ @ )
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The expressions for the coefficients:
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IPAC21 The «freey field. The singularities of the integrands
0 Imkxl

rH(r))C ) ~ koZ +oo R ik x+ikyo (y+bg)
ox\__49% ;5 jdkx{ xle
) o€ % SRS $ ks
0 —i_km[)
The branch points: b Re k.
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The poles are found from the dispersion equation:
34 e —ik 0, n _mn" Fig.3. The complex plane of £ _: the integration
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The new integration variable v : k, = 1- fB*shy
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The saddle point: d®(y)/dy=0 => y, =iy,
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The steepest descent path {ReCI) (1)=Re®(y,) ot

are found from the system: Im® ( Z) > Im® ( P ) Fig.4. The complex plane of y : the initial integra-
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The estimation of the integrals over the steepest est descent path I' (for x > 0).
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IPAC21 The surface waves
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The contributions of the poles: 1) ~TI®)  =27isgn(x) ResH(r)
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The Fourier-transforms of the electromagnetic field of the surface wave:
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IPAC21 The surface waves
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+00 +00
The Fourier integrals: E\) _ = IdkOE(S) e fo g = j dk HY) e
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The Fourier-transform of the bunch profile:
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Fig.5. The components of the surface wave H ;S)(top row) and H és) (bottom row) depending on coordinatez for
the Gaussian bunch with ¢ =1nC . The bunch velocity is £ =1 (solid black curves) and £ = 0.75 (dotted red cur-
ves). The bunch length is 2o = 4cm (left coloumn) and 2o = 6 cm (right coloumn). The parameters: d = 0.05cm,
d, =0.0lcm, d; =1lcm, §;=2cm, x=y=0, t=0.
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IPAC21 The energy losses

Q

The energy losses per the unit of the path length:
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Fig.7. The energy of the surface wave dWw®)/ dz, depending on bunch velocity g for the Gaussian bunch with
q =1nC . The bunch length is 20 = 4cm (left coloumn) and 20 = 6 cm (right coloumn). The depth of the structure
is d; =1cm(solid black curves), d; = 0.9 cm (dotted red curves) and d; = 0.8cm (dashed-dotted blue curves). The
parameters: d =0.05cm, d; =0.0lcm, b, =2cm.
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IPAC21 Conclusions
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- Investigated the relatively “longwave” radiation from the charged particle bunch moving along
the corrugated conductive structure
- Studied the case of the deep corrugation when the depth of the structure 1s much greater than its
period
- Obtained the general solution of the problem with the use of the equivalent boundary conditions
- Performed the asymptotic analysis of the general solution
- Shown that the volume radiation is absent but the surface waves can be generated at the
frequencies under consideration
- Obtained the Fourier-transforms for the electromagnetic field of the surface wave
- Presented the results of numerical calculating the electromagnetic field of the surface wave
- Analyzed the energy of the surface radiation and obtained the formula for the energy per the unit

of the path length
- Presented the dependences of the energy on the bunch velocity and the depth of the structure
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