Radiation of a charged particle bunch moving along a deep corrugated surface with a small period

Evgenii S. Simakov and Andrey V. Tyukhtin Saint Petersburg State University, Saint Petersburg, Russia

Fig.1. The corrugated structure.

The equivalent boundary conditions

The equivalent boundary conditions (EBC) can be used under condition [1]:

$$
d \ll \lambda
$$

The EBC [1]: $E_{\omega z}=\eta^{m} H_{\omega x}, \quad E_{\omega x}=0$
The deep corrugation: $d \ll d_{3}$
The impedance [1]:

$$
\eta^{m}=i \frac{d_{2}}{d} \frac{\operatorname{tg}\left(k_{0} d_{3}\right)}{1-k_{0} d l \operatorname{tg}\left(k_{0} d_{3}\right)}, \quad k_{0}=\frac{\omega}{c}
$$

Parameter $l[1]: l=\frac{1}{2 \pi}\left[(2-\xi)^{2} \ln (2-\xi)-\xi^{2} \ln \xi-2(1-\xi) \ln 4(1-\xi)\right], \quad \xi=\frac{d_{1}}{d}, \quad 0<l \ll 1$
[1] E.I. Nefedov and A.N. Sivov, Electrodynamics of periodic structures, Nauka, Moscow, Russia, (1977)

Fig.2. The corrugated structure and the moving bunch.

The problem definition
The velocity of the bunch:

$$
\vec{V}=V_{z} \vec{e}_{z}, V_{z} \equiv V=c \beta
$$

The charge and current densities:

$$
\rho=q \delta(x) \delta\left(y-b_{0}\right) \kappa(z-V t), j_{z} \equiv j=V \rho
$$

The total field: $\vec{\Pi}=\vec{\Pi}^{(i)}+\vec{\Pi}^{(r)}$

$$
\begin{aligned}
& \vec{\Pi}^{(i)} \text { - the «forced» field } \\
& \vec{\Pi}^{(r)} \text { - the «free» field }
\end{aligned}
$$

The Helmholtz equation for the Fourier-transforms of the Hertz potential: $\left\{\Delta+k_{0}^{2}\right\} \vec{\Pi}_{\omega}=-\frac{4 \pi i}{c k_{0}} \vec{j}_{\omega}$

The «forced» Hertz potential: $\quad \vec{\Pi}^{(i)}=\Pi_{z}^{(i)} \vec{e}_{z}$

$$
\Pi_{\omega z}^{(i)}=-\frac{q \tilde{\kappa}}{k_{0} c} e^{i \frac{k_{0} z+\infty}{\beta}} \int_{-\infty} d k_{x} \frac{e^{i k_{x} x+i k_{y 0}\left|y-b_{0}\right|}}{k_{y 0}}, \quad k_{y 0}=i \sqrt{k_{x}^{2}+k_{0}^{2} \frac{1-\beta^{2}}{\beta^{2}}}, \operatorname{Im} k_{y 0}>0
$$

The Fourier-transform of the bunch profile: $\quad \tilde{\kappa}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \zeta \kappa(\zeta) \exp \left(-i \frac{k_{0}}{\beta} \zeta\right), \zeta=z-V t$
The «free» Hertz potential: $\quad \vec{\Pi}^{(r)}=\Pi_{x}^{(r)} \vec{e}_{x}+\Pi_{z}^{(r)} \vec{e}_{z}$

$$
\Pi_{\omega x}^{(r)}=-\frac{q \tilde{\kappa}}{k_{0} c} e^{i \frac{k_{0} z}{\beta}} \int_{-\infty}^{+\infty} d k_{x} R_{x} \frac{e^{i k_{x} x+i k_{y 0}\left(y+b_{0}\right)}}{k_{y 0}}, \quad \Pi_{\omega z}^{(r)}=-\frac{q \tilde{\kappa}}{k_{0} c} e^{i \frac{k_{0} z}{\beta}} \int_{-\infty} d k_{x} R_{z} \frac{e^{i k_{x} x+i k_{y 0}\left(y+b_{0}\right)}}{k_{y 0}}
$$

Relations between the Fourier-transforms of the electromagnetic field and the Hertz potential: $\vec{E}_{\omega}=\vec{\nabla} \operatorname{div} \vec{\Pi}_{\omega}+k_{0}^{2} \vec{\Pi}_{\omega}, \vec{H}_{\omega}=-i k_{0} \operatorname{rot} \vec{\Pi}_{\omega}$

The equivalent boundary conditions: $\left\{\begin{array}{l}E_{\omega z}^{(i)}+E_{\omega z}^{(r)}=\eta^{m}\left(H_{\omega x}^{(i)}+H_{\omega x}^{(r)}\right) \\ E_{\omega x}^{(i)}+E_{\omega x}^{(r)}=0\end{array}\right.$
The expressions for the coefficients:

$$
\begin{gathered}
R_{x}=\frac{2 k_{0} k_{x} k_{y 0} \beta \eta^{m}}{k_{0}^{3}+\beta^{2}\left(k_{x}^{2}-k_{0}^{2}\right)\left(k_{0}-k_{y 0} \eta^{m}\right)}, \quad R_{z}=-\frac{k_{0}^{3}+\beta^{2}\left(k_{x}^{2}-k_{0}^{2}\right)\left(k_{0}+k_{y 0} \eta^{m}\right)}{k_{0}^{3}+\beta^{2}\left(k_{x}^{2}-k_{0}^{2}\right)\left(k_{0}-k_{y 0} \eta^{m}\right)} \\
\left\{\begin{array}{l}
\Pi_{\omega x}^{(r)} \\
\prod_{\omega z}^{(r)}
\end{array}\right\}=-\frac{q \tilde{\kappa}}{k_{0} c} e^{i \frac{k_{0} z+\infty}{\beta}} \int_{-\infty} d k_{x}\left\{\begin{array}{l}
R_{x} \\
R_{z}
\end{array}\right\} \frac{e^{i k_{x} x+i k_{y 0}\left(y+b_{0}\right)}}{k_{y 0}}, \quad k_{y 0}=i \sqrt{k_{x}^{2}+k_{0}^{2} \frac{1-\beta^{2}}{\beta^{2}}}, \operatorname{Im} k_{y 0}>0
\end{gathered}
$$

$$
\left\{\begin{array}{l}
\Pi_{\omega x}^{(r)} \\
\Pi_{\omega z}^{(r)}
\end{array}\right\}=-\frac{q \tilde{\kappa}}{k_{0} c} e^{i \frac{k_{0} z}{\beta}} \int_{-\infty}^{+\infty} d k_{x}\left\{\begin{array}{l}
R_{x} \\
R_{z}
\end{array}\right\} \frac{e^{i k_{x} x+i k_{y 0}\left(y+b_{0}\right)}}{k_{y 0}}
$$

The branch points:

$$
k_{y 0}=i \sqrt{k_{x}^{2}+k_{0}^{2} \frac{1-\beta^{2}}{\beta^{2}}}=0 \Rightarrow \pm k_{x b}= \pm i \frac{k_{0}}{\beta} \sqrt{1-\beta^{2}}
$$

The poles are found from the dispersion equation:

$$
k_{0}^{3}+\beta^{2}\left(k_{x}^{2}-k_{0}^{2}\right)\left(k_{0}-i k_{y 0} \eta_{0}^{m}\right)=0, \quad \eta_{0}^{m}=\operatorname{Im} \eta^{m}
$$

The solutions:

$$
\begin{aligned}
& \text { solutions: } \\
& \pm k_{x 0}= \pm k_{0} \sqrt{1-\frac{\operatorname{sgn}\left(\eta_{0}^{m}\right)}{2 \eta_{0}^{m 2}}\left(\sqrt{1+\frac{4 \eta_{0}^{m 2}}{\beta^{2}}}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right)}
\end{aligned}
$$

Fig.3. The complex plane of k_{x} : the integration path (real axis), poles $\pm k_{x 0}$, branch points $\pm k_{x b}$ and the cuts.

The poles are real if $\beta>\frac{1}{\sqrt{1+\eta_{0}^{m 2}}}$

The new integration variable $\chi: k_{x}=\frac{k_{0}}{\beta} \sqrt{1-\beta^{2}} \operatorname{sh} \chi$ The phase: $\Phi(\chi)=\frac{k_{0}}{\beta} \sqrt{1-\beta^{2}}\left[x \operatorname{sh} \chi+i\left(y+b_{0}\right) \operatorname{ch} \chi\right]$

The saddle point: $d \Phi(\chi) / d \chi=0 \quad \Rightarrow \quad \chi_{s}=i \chi_{s}^{\prime \prime}$
The steepest descent path $\left\{\operatorname{Re} \Phi(\chi)=\operatorname{Re} \Phi\left(\chi_{s}\right)\right.$ are found from the system: $\quad\left\{\operatorname{Im} \Phi(\chi)>\operatorname{Im} \Phi\left(\chi_{s}\right)\right.$

The estimation of the integrals over the steepest descent path:

$$
\Pi_{\omega x, z}^{(r)} \sim \frac{\exp \left[-k_{0} \beta^{-1} \sqrt{1-\beta^{2}} \sqrt{x^{2}+\left(y+b_{0}\right)^{2}}\right]}{\left[x^{2}+\left(y+b_{0}\right)^{2}\right]^{1 / 4}}
$$

Fig.4. The complex plane of χ : the initial integration path, poles $\pm \chi_{0}$, saddle point χ_{s} and the steepest descent path $\Gamma_{+}^{*}($ for $x>0)$.
We can neglect the contribution of the saddle point under condition:

$$
k_{0} \beta^{-1} \sqrt{1-\beta^{2}} \sqrt{x^{2}+\left(y+b_{0}\right)^{2}} \gg 1
$$

IPAC21

The contributions of the poles: $\quad \Pi_{\omega x, z}^{(\mathrm{r})} \approx \Pi_{\omega x, z}^{(\mathrm{s})}=2 \pi i \operatorname{sgn}(x) \underset{ \pm k_{x 0}}{\operatorname{Res} \Pi_{\omega x, z}^{(\mathrm{r})}}$
The Fourier-transforms of the electromagnetic field of the surface wave:

$$
\begin{array}{rlrl}
E_{\omega x}^{(s)} & =0 & H_{\omega x}^{(s)} & =\frac{2 \pi i q \tilde{\kappa}}{c} \frac{k_{0}\left|\eta_{0}^{m}\right| g^{2}}{\beta \sqrt{\beta^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right) g^{2}}} e^{\Phi\left(k_{0}, \vec{R}\right)} \\
E_{\omega y}^{(s)} & =-\frac{2 \pi i q \tilde{\kappa}}{c} \frac{k_{0} \eta_{0}^{m}}{\sqrt{\beta^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right) g^{2}}} e^{\Phi\left(k_{0}, \vec{R}\right)} & H_{\omega y}^{(s)}=-\operatorname{sgn}(x) \frac{2 \pi q \tilde{\kappa}}{c} \frac{k_{0}\left(g^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right)}{g^{2}} e^{\Phi\left(k_{0}, \vec{R}\right)} \\
E_{\omega z}^{(s)} & =\frac{2 \pi q \tilde{\kappa}}{c} \frac{k_{0} \beta\left(g^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right)}{g^{2} \sqrt{\beta^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right) g^{2}}} e^{\Phi\left(k_{0}, \vec{R}\right)} & H_{\omega z}^{(s)}=-\operatorname{sgn}(x) \frac{2 \pi i q \tilde{\kappa}}{c} \frac{k_{0} \eta_{0}^{m}}{\beta} e^{\Phi\left(k_{0}, \vec{R}\right)} \\
\Phi\left(k_{0}, \vec{R}\right) & =i \frac{k_{0}}{\beta} \sqrt{\beta^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right) g^{2}}|x|+i \frac{k_{0}}{\beta} z-\frac{k_{0}\left|\eta_{0}^{m}\right|}{\beta^{2}} g^{2}\left(y+b_{0}\right), \quad g^{2}=\frac{\beta^{2}}{2 \eta_{0}^{m 2}}\left(\sqrt{1+4 \eta_{0}^{m 2} \beta^{-2}}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right)
\end{array}
$$

The Fourier integrals: $\quad E_{x, y, z}^{(s)}=\int_{-\infty}^{+\infty} d k_{0} E_{\omega x, y, z}^{(s)} e^{-k_{0} c t}, H_{x, y, z}^{(s)}=\int_{-\infty}^{+\infty} d k_{0} H_{\omega x, y, z}^{(s)} e^{-k_{0} c t}$

The Fourier-transform of the bunch profile:

$$
\tilde{\kappa}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \zeta \kappa(\zeta) \exp \left(-i \frac{k_{0}}{\beta} \zeta\right), \zeta=z-V t
$$

The Gaussian bunch:

$$
\kappa_{\text {gaus }}(\zeta)=\frac{e^{-\zeta^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma}, \quad \tilde{\kappa}_{\text {gaus }}=\frac{e^{-k_{0}^{2} \sigma^{2} / 2 \beta^{2}}}{2 \pi}, \quad 2 \sigma-\text { the bunch length }
$$

Fig.5. The components of the surface wave $H_{y}^{(s)}$ (top row) and $H_{z}^{(s)}$ (bottom row) depending on coordinate z for the Gaussian bunch with $q=1 \mathrm{nC}$. The bunch velocity is $\beta=1$ (solid black curves) and $\beta=0.75$ (dotted red curves). The bunch length is $2 \sigma=4 \mathrm{~cm}$ (left coloumn) and $2 \sigma=6 \mathrm{~cm}$ (right coloumn). The parameters: $d=0.05 \mathrm{~cm}$, $d_{1}=0.01 \mathrm{~cm}, d_{3}=1 \mathrm{~cm}, b_{0}=2 \mathrm{~cm}, x=y=0, t=0$.

The energy losses per the unit of the path length:

$$
\frac{d W}{d z_{0}}=\left.\frac{2}{c \beta} \int_{-\infty}^{+\infty} d z \int_{0}^{+\infty} d y S_{x}\right|_{x>0}, \quad S_{x}=\frac{c}{4 \pi}\left(E_{y}^{(s)} H_{z}^{(s)}-E_{z}^{(s)} H_{y}^{(s)}\right)
$$

The energy losses in terms of the Fourier-transforms:

$$
\frac{d W}{d z_{0}}=2 c^{2} \int_{0}^{+\infty} d k_{0} \int_{0}^{+\infty} d y \operatorname{Re}\left(E_{\omega y}^{(s)} H_{\omega z}^{(s)^{*}}-E_{\omega z}^{(s)} H_{\omega y}^{(s)^{*}}\right)
$$

Fig.6. The energy flow of the charge.

After the integration over $y: \frac{d W}{d z_{0}}=4 \pi^{2} q^{2} \beta \int_{0}^{+\infty} d k_{0} k_{0}|\tilde{\kappa}|^{2} \frac{\eta_{0}^{m 2}+\beta^{2} g^{-4}\left(g^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right)^{2}}{\left|\eta_{0}^{m}\right| g^{2} \sqrt{\beta^{2}-\operatorname{sgn}\left(\eta_{0}^{m}\right) g^{2}}} e^{-2 k_{0} \beta^{-2}\left|\eta_{0}^{m}\right| g^{2} b_{0}}$

$$
g^{2}=\frac{\beta^{2}}{2 \eta_{0}^{m 2}}\left(\sqrt{1+4 \eta_{0}^{m 2} \beta^{-2}}-\operatorname{sgn}\left(\eta_{0}^{m}\right)\right), \quad \eta_{0}^{m}=\frac{d_{2}}{d} \frac{\operatorname{tg}\left(k_{0} d_{3}\right)}{1-k_{0} d l \operatorname{tg}\left(k_{0} d_{3}\right)}, \quad k_{0}=\frac{\omega}{c}
$$

Fig.7. The energy of the surface wave $d W^{(s)} / d z_{0}$ depending on bunch velocity β for the Gaussian bunch with $q=1 \mathrm{nC}$. The bunch length is $2 \sigma=4 \mathrm{~cm}$ (left coloumn) and $2 \sigma=6 \mathrm{~cm}$ (right coloumn). The depth of the structure is $d_{3}=1 \mathrm{~cm}$ (solid black curves), $d_{3}=0.9 \mathrm{~cm}$ (dotted red curves) and $d_{3}=0.8 \mathrm{~cm}$ (dashed-dotted blue curves). The parameters: $d=0.05 \mathrm{~cm}, d_{1}=0.01 \mathrm{~cm}, b_{0}=2 \mathrm{~cm}$.

- Investigated the relatively "longwave" radiation from the charged particle bunch moving along the corrugated conductive structure
- Studied the case of the deep corrugation when the depth of the structure is much greater than its period
- Obtained the general solution of the problem with the use of the equivalent boundary conditions
- Performed the asymptotic analysis of the general solution
- Shown that the volume radiation is absent but the surface waves can be generated at the frequencies under consideration
- Obtained the Fourier-transforms for the electromagnetic field of the surface wave
- Presented the results of numerical calculating the electromagnetic field of the surface wave
- Analyzed the energy of the surface radiation and obtained the formula for the energy per the unit of the path length
- Presented the dependences of the energy on the bunch velocity and the depth of the structure

Thank you for attention!

