

Radiation of a charged particle bunch moving along a deep corrugated surface with a small period

<u>Evgenii S. Simakov</u> and Andrey V. Tyukhtin Saint Petersburg State University, Saint Petersburg, Russia

[1] E.I. Nefedov and A.N. Sivov, *Electrodynamics of periodic structures*, Nauka, Moscow, Russia, (1977)

The work was supported by the Russian Science Foundation (Grant No. 18-72-10137)

Fig.2. The corrugated structure and the moving bunch.

The problem definition

The velocity of the bunch:

$$\vec{V} = V_z \vec{e}_z, \ V_z \equiv V = c\beta$$

The charge and current densities: $\rho = q\delta(x)\delta(y-b_0)\kappa(z-Vt), \quad j_z \equiv j = V\rho$

The total field: $\vec{\Pi} = \vec{\Pi}^{(i)} + \vec{\Pi}^{(r)}$ $\vec{\Pi}^{(i)}$ - the «forced» field $\vec{\Pi}^{(r)}$ - the «free» field

The Helmholtz equation for the Fourier-transforms of the Hertz potential: $\left\{\Delta + k_0^2\right\} \vec{\Pi}_{\omega} = -\frac{4\pi i}{ck_0} \vec{j}_{\omega}$

The Hertz potential of the total field

The «forced» Hertz potential: $\vec{\Pi}^{(i)} = \Pi_z^{(i)} \vec{e}_z$

$$\Pi_{\omega z}^{(i)} = -\frac{q\tilde{\kappa}}{k_0 c} e^{i\frac{k_0 z}{\beta}} \int_{-\infty}^{\infty} dk_x \frac{e^{ik_x x + ik_{y0}|y-b_0|}}{k_{y0}}, \quad k_{y0} = i\sqrt{k_x^2 + k_0^2 \frac{1-\beta^2}{\beta^2}}, \quad \text{Im} k_{y0} > 0$$

The Fourier-transform of the bunch profile: $\tilde{\kappa} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\zeta \kappa(\zeta) \exp\left(-i\frac{k_0}{\beta}\zeta\right), \quad \zeta = z - Vt$

The «free» Hertz potential: $\vec{\Pi}^{(r)} = \Pi_x^{(r)} \vec{e}_x + \Pi_z^{(r)} \vec{e}_z$

$$\Pi_{\omega x}^{(r)} = -\frac{q\tilde{\kappa}}{k_0 c} e^{i\frac{k_0 z}{\beta}} \int_{-\infty}^{+\infty} dk_x R_x \frac{e^{ik_x x + ik_{y0}(y+b_0)}}{k_{y0}}, \quad \Pi_{\omega z}^{(r)} = -\frac{q\tilde{\kappa}}{k_0 c} e^{i\frac{k_0 z}{\beta}} \int_{-\infty}^{+\infty} dk_x R_z \frac{e^{ik_x x + ik_{y0}(y+b_0)}}{k_{y0}}$$

Relations between the Fourier-transforms of the electromagnetic field and the Hertz potential: $\vec{E}_{\omega} = \vec{\nabla} \text{div} \vec{\Pi}_{\omega} + k_0^2 \vec{\Pi}_{\omega}, \ \vec{H}_{\omega} = -ik_0 \text{rot} \vec{\Pi}_{\omega}$

The «free» field

The equivalent boundary conditions:

$$\begin{cases} E_{\omega z}^{(i)} + E_{\omega z}^{(r)} = \eta^m \left(H_{\omega x}^{(i)} + H_{\omega x}^{(r)} \right) \\ E_{\omega x}^{(i)} + E_{\omega x}^{(r)} = 0 \end{cases}$$

The expressions for the coefficients:

The «free» field. The singularities of the integrands

$$\begin{cases} \Pi_{\omega x}^{(r)} \\ \Pi_{\omega z}^{(r)} \end{cases} = -\frac{q\tilde{\kappa}}{k_0 c} e^{i\frac{k_0 z}{\beta}} \int_{-\infty}^{+\infty} dk_x \begin{cases} R_x \\ R_z \end{cases} \frac{e^{ik_x x + ik_{y0}(y+b_0)}}{k_{y0}} \end{cases}$$

The branch points:

$$k_{y0} = i\sqrt{k_x^2 + k_0^2 \frac{1 - \beta^2}{\beta^2}} = 0 \implies \pm k_{xb} = \pm i\frac{k_0}{\beta}\sqrt{1 - \beta^2}$$

The poles are found from the dispersion equation:

$$k_0^3 + \beta^2 \left(k_x^2 - k_0^2\right) \left(k_0 - ik_{y0}\eta_0^m\right) = 0, \quad \eta_0^m = \operatorname{Im} \eta^m$$

The solutions:

$$\pm k_{x0} = \pm k_0 \sqrt{1 - \frac{\operatorname{sgn}(\eta_0^m)}{2\eta_0^{m2}}} \left(\sqrt{1 + \frac{4\eta_0^{m2}}{\beta^2}} - \operatorname{sgn}(\eta_0^m) \right)$$

Fig.3. The complex plane of k_x : the integration path (real axis), poles $\pm k_{x0}$, branch points $\pm k_{xb}$ and the cuts.

The poles are real if
$$\beta > \frac{1}{\sqrt{1 + \eta_0^{m2}}}$$

The new integration variable χ : $k_x = \frac{k_0}{\beta} \sqrt{1 - \beta^2} \operatorname{sh} \chi$

The phase: $\Phi(\chi) = \frac{k_0}{\beta} \sqrt{1 - \beta^2} \left[x \operatorname{sh} \chi + i (y + b_0) \operatorname{ch} \chi \right]$

The saddle point: $d\Phi(\chi)/d\chi = 0 \implies \chi_s = i\chi_s''$

The steepest descent path $\begin{cases} \operatorname{Re}\Phi(\chi) = \operatorname{Re}\Phi(\chi_s) \\ \operatorname{Im}\Phi(\chi) > \operatorname{Im}\Phi(\chi_s) \end{cases}$

The estimation of the integrals over the steepest descent path: $\int \int \frac{1}{\sqrt{1-q^2}} \sqrt{\frac{2}{\sqrt{1-q^2}}} dx$

$$\Pi_{\omega x,z}^{(r)} \sim \frac{\exp\left[-k_0\beta^{-1}\sqrt{1-\beta^2}\sqrt{x^2+(y+b_0)^2}\right]}{\left[x^2+(y+b_0)^2\right]^{1/4}}$$

Fig.4. The complex plane of χ : the initial integration path, poles $\pm \chi_0$, saddle point χ_s and the steepest descent path Γ^*_+ (for x > 0).

We can neglect the contribution of the saddle point under condition:

$$k_0 \beta^{-1} \sqrt{1 - \beta^2} \sqrt{x^2 + (y + b_0)^2} >> 1$$

The contributions of the poles: $\Pi_{\omega x,z}^{(r)} \approx \Pi_{\omega x,z}^{(s)} = 2\pi i \operatorname{sgn}(x) \operatorname{Res}_{\pm k_{x0}} \Pi_{\omega x,z}^{(r)}$

The Fourier-transforms of the electromagnetic field of the surface wave:

$$E_{\omega x}^{(s)} = 0 \qquad \qquad H_{\omega x}^{(s)} = \frac{2\pi i q \tilde{\kappa}}{c} \frac{k_0 |\eta_0^m| g^2}{\beta \sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2}} e^{\Phi(k_0, \vec{R})}$$

$$E_{\omega y}^{(s)} = -\frac{2\pi i q \tilde{\kappa}}{c} \frac{k_0 \eta_0^m}{\sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2}} e^{\Phi(k_0, \vec{R})} \qquad \qquad H_{\omega y}^{(s)} = -\text{sgn}(x) \frac{2\pi q \tilde{\kappa}}{c} \frac{k_0 (g^2 - \text{sgn}(\eta_0^m))}{g^2} e^{\Phi(k_0, \vec{R})}$$

$$E_{\omega z}^{(s)} = \frac{2\pi q \tilde{\kappa}}{c} \frac{k_0 \beta (g^2 - \text{sgn}(\eta_0^m))}{g^2 \sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2}} e^{\Phi(k_0, \vec{R})} \qquad \qquad H_{\omega z}^{(s)} = -\text{sgn}(x) \frac{2\pi i q \tilde{\kappa}}{c} \frac{k_0 \eta_0^m}{\beta} e^{\Phi(k_0, \vec{R})}$$

$$E_{\omega z}^{(s)} = \frac{2\pi q \tilde{\kappa}}{c} \frac{k_0 \beta (g^2 - \text{sgn}(\eta_0^m))}{g^2 \sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2}} e^{\Phi(k_0, \vec{R})} \qquad \qquad H_{\omega z}^{(s)} = -\text{sgn}(x) \frac{2\pi i q \tilde{\kappa}}{c} \frac{k_0 \eta_0^m}{\beta} e^{\Phi(k_0, \vec{R})}$$

$$E_{\omega z}^{(s)} = \frac{1}{\beta} \sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2} |x| + i \frac{k_0}{\beta} z - \frac{k_0 |\eta_0^m|}{\beta^2} g^2 (y + b_0), \quad g^2 = \frac{\beta^2}{2\eta_0^{m^2}} (\sqrt{1 + 4\eta_0^{m^2} \beta^{-2}} - \text{sgn}(\eta_0^m) g^2)$$

The surface waves

The Fourier integrals:
$$E_{x,y,z}^{(s)} = \int_{-\infty}^{+\infty} dk_0 E_{\omega x,y,z}^{(s)} e^{-k_0 ct}, \ H_{x,y,z}^{(s)} = \int_{-\infty}^{+\infty} dk_0 H_{\omega x,y,z}^{(s)} e^{-k_0 ct}$$

The Fourier-transform of the bunch profile:

$$\tilde{\kappa} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} d\zeta \,\kappa(\zeta) \exp\left(-i\frac{k_0}{\beta}\zeta\right), \ \zeta = z - Vt$$

The Gaussian bunch:

$$\kappa_{gaus}(\zeta) = \frac{e^{-\zeta^2/2\sigma^2}}{\sqrt{2\pi\sigma}}, \quad \tilde{\kappa}_{gaus} = \frac{e^{-k_0^2\sigma^2/2\beta^2}}{2\pi}, \quad 2\sigma - \text{the bunch length}$$

the Gaussian bunch with q = 1 nC. The bunch velocity is $\beta = 1$ (solid black curves) and $\beta = 0.75$ (dotted red curves). The bunch length is $2\sigma = 4$ cm (left coloumn) and $2\sigma = 6$ cm (right coloumn). The parameters: d = 0.05 cm, $d_1 = 0.01$ cm, $d_3 = 1$ cm, $b_0 = 2$ cm, x = y = 0, t = 0.

The energy losses per the unit of the path length:

$$\frac{dW}{dz_0} = \frac{2}{c\beta} \int_{-\infty}^{+\infty} dz \int_{0}^{+\infty} dy S_x \Big|_{x>0}, \quad S_x = \frac{c}{4\pi} \Big(E_y^{(s)} H_z^{(s)} - E_z^{(s)} H_y^{(s)} \Big)$$

The energy losses in terms of the Fourier-transforms:

$$\frac{dW}{dz_0} = 2c^2 \int_0^{+\infty} dk_0 \int_0^{+\infty} dy \operatorname{Re}\left(E_{\omega y}^{(s)} H_{\omega z}^{(s)*} - E_{\omega z}^{(s)} H_{\omega y}^{(s)*}\right)$$

The energy losses

Fig.6. The energy flow of the charge.

After the integration over $y: \frac{dW}{dz_0} = 4\pi^2 q^2 \beta \int_0^{+\infty} dk_0 k_0 |\tilde{\kappa}|^2 \frac{\eta_0^{m^2} + \beta^2 g^{-4} (g^2 - \text{sgn}(\eta_0^m))^2}{|\eta_0^m| g^2 \sqrt{\beta^2 - \text{sgn}(\eta_0^m) g^2}} e^{-2k_0 \beta^{-2} |\eta_0^m| g^2 b_0}$ $g^2 = \frac{\beta^2}{2\eta_0^{m^2}} (\sqrt{1 + 4\eta_0^{m^2} \beta^{-2}} - \text{sgn}(\eta_0^m)), \quad \eta_0^m = \frac{d_2}{d} \frac{\text{tg}(k_0 d_3)}{1 - k_0 d l \, \text{tg}(k_0 d_3)}, \quad k_0 = \frac{\omega}{c}$

The work was supported by the Russian Science Foundation (Grant No. 18-72-10137)

Fig.7. The energy of the surface wave $dW^{(s)}/dz_0$ depending on bunch velocity β for the Gaussian bunch with q = 1 nC. The bunch length is $2\sigma = 4$ cm (left coloumn) and $2\sigma = 6$ cm (right coloumn). The depth of the structure is $d_3 = 1$ cm (solid black curves), $d_3 = 0.9$ cm (dotted red curves) and $d_3 = 0.8$ cm (dashed-dotted blue curves). The parameters: d = 0.05 cm, $d_1 = 0.01$ cm, $b_0 = 2$ cm.

- Investigated the relatively "longwave" radiation from the charged particle bunch moving along the corrugated conductive structure

- Studied the case of the deep corrugation when the depth of the structure is much greater than its period

- Obtained the general solution of the problem with the use of the equivalent boundary conditions
- Performed the asymptotic analysis of the general solution

- Shown that the volume radiation is absent but the surface waves can be generated at the frequencies under consideration

- Obtained the Fourier-transforms for the electromagnetic field of the surface wave
- Presented the results of numerical calculating the electromagnetic field of the surface wave
- Analyzed the energy of the surface radiation and obtained the formula for the energy per the unit of the path length
- Presented the dependences of the energy on the bunch velocity and the depth of the structure

Thank you for attention!

The work was supported by the Russian Science Foundation (Grant No. 18-72-10137)