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Introduction

In this poster

We review a diffusive framework for describing the non-linear betatron motion by
means of a Fokker-Planck equation with action-only dependent diffusion coefficient
D(I);

We show how from such framework we can formulate an analytical estimation for
the beam loss current;

We present a fitting procedure for outgoing beam current and we test it on a toy
model on 2 experiment-inspired scenarios.

Diffusive models for nonlinear beam dynamics IPAC’21 – May 24-28, 2021 2 / 10



Context of this research

Many studies highlighted how Dynamic Aperture can be described as a function of
the number of turns, in a form related to Nekhoroshev Theorem (Bazzani et al.,
“Advances on the modeling of the time evolution of dynamic aperture of hadron
circular accelerators”);

Model 2⇒ DA(N) = ρ∗
( κ
2e

)κ 1

lnκ N
N0

(1)

Recent studies are exploring the possibility of describing the beam distribution in
terms of a diffusive model, also related to Nekhoroshev Theorem (Bazzani et al.,
“Analysis of the non-linear beam dynamics at top energy for the CERN large hadron
collider by means of a diffusion model”);

Experimental measurements of LHC halo dynamics at different positions are
available thanks to the moving collimator system (Gorzawski et al., “Probing LHC
halo dynamics using collimator loss rates at 6.5 TeV”).
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The diffusive framework in a nutshell (1/2)

We describe the betatron motion in terms of a stochastic perturbed Hamiltonian system

H(θ, I, t) = H0(I) + εξ(t)H1(θ, I) (2)

H0(I) regular, deterministic part of the magnetic lattice;

εH1(θ, I) non-integrable part that causes the phase-space inhomogeneities, linked
with Nekhoroshev estimate (ε is small);

ξ(t) stochastic noise with zero mean and unit variance.

With the Averaging Principle, we can describe the evolution of a beam distribution
ρ(I, t) as the solution of the Fokker-Planck equation:

∂ρ

∂t
=
ε2

2

∂

∂I

(
D(I)

∂ρ

∂I

)
(3)

Where D(I) is the angular average of the non-integrable part
〈(

∂H1
∂θ

)2〉
θ
, which can be

estimated via optimal remainders.
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The diffusive framework in a nutshell (2/2)

The Nekhoroshev Theorem suggests the
following form for the diffusion coefficient D(I)

D(I) = c exp

[
−2
(
I∗
I

) 1
2κ

]
(4)

c−1 =

∫ Ia

0

exp

[
−2
(
I∗
I

) 1
2κ

]
dI (5)

where Ia is the position of the absorbing
boundary condition corresponding to the fast
dynamic aperture.
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An example of a Fokker-Planck process (3)
with D(I) given by (4), with κ = 0.33,
I∗ = 21.5, ε2/2 = c. (Top) D(I).

(Bottom) Crank-Nicolson integration of the
process.
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What is the purpose of such framework?

The goal of this line of research is to develop a valid fitting procedure for extracting the
model parameters of D(I) from the collimator loss rates of accelerators like LHC.

Starting from the established local diffusion measurements, we look forward to gain
insight into the global beam behaviour.

[From Gorzawski et al.] Beam losses in LHC from the IC-BLM monitor. The losses are measured via moving
jaws that perform the scraping on the vertical and horizontal plane separately. These measurements have been

used to probe the local diffusive regime of beam halos.
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Current Interpolation

It is possible to obtain a good approximation for
the outgoing current at an absorbing boundary
condition Ia for an initial condition δ(I − I0)

J (t) = − exp

−
(
J(I0) +

ν(I0)
2
t
)2

2t

 J(I0)√
2πt3/2

(6)
where we perform the change of variables

J(I0) = −
∫ Ia

I0

exp

[(
I∗
I

) 1
2κ

]
dI (7)

and we linearize (4) at the initial condition I0 for
obtaining the drift term

ν (I0) = c1/2
1
2κ

I0

(
I∗
I0

) 1
2κ

exp

[(
−I∗
I0

) 1
2κ

]
(8)
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Outgoing current of a Fokker-Planck
process (continuous lines), compared with

the analytical approximation (dashed lines);
dotted lines are a fitting procedure of κ and
I∗ based on the analytical approximation.
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Towards a fitting procedure

Starting from the outgoing current approximation (6) with the linearization (8), we
developed some fitting procedures for reconstructing the I∗ and κ values from outgoing
current data.

We measured the reconstruction performance on toy models with known diffusive
characters, in order to determine what are the strongest observables to use for a fitting
procedure in more realistic scenarios.

We consider the following 2 scenarios:

IaI0I ′0

ρ0

i) Fixed absorbing boundary condition,
different cutting points in the initial
distribution.

Ia

I0I ′0

ρ0

I ′a

ii) Constant distance between the cut in the
initial distribution and the absorbing
boundary condition.
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Numerical results

For both scenario i) and ii), we consider the
reconstruction performance of I∗ and κ,
fitting either a single current profile or the
timing of multiple current peaks
corresponding to different values of I0/I∗.
We observe the following:

Good reconstruction performances
when Ia − I0 is small;

Transient effects depending on Ia − I0
when considering only one simulation;

Strong fitting correlation between I∗
and κ

Excellent reconstructing performances
when interpolating the data from
multiple simulations;
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Fitting results based on Eq (6), here we try
to reconstruct κ, I∗ for different initial

conditions and different absorbing boundary
positions.
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Conclusions and future work

Conclusions:

We have shown that, within a diffusive framework, it is possible to formulate
reasonable analytical estimations for the current lost.

We have shown that these analytical estimations can be used to formulate fitting
procedures for reconstructing the Nekhoroshev’s terms I∗ and κ.

Future work:

Further studies are on-going to make this approach more realistic and to apply it to
the collimator scans that are used to probe the beam-halo dynamics in the LHC.
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