Plasma Simulations for an MBEC Cooler for the EIC

W. F. Bergan Brookhaven National Laboratory, Upton, NY, USA

Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy

Microbunched Electron Cooling (MBEC)

Saturation

Kick/Drift Model

One Amplifier

One Amplifier (Wake)

Two Amplifiers (Current Design)

NATIONAL

LABORATORY

Wake Function (275 GeV and 100 GeV)

64% (275 GeV) and 43% (100 GeV) of diffusion as in theory

Conclusions

• Theory and simulation agree well at low saturation

• Can input reductions in cooling and diffusion rates into cooling theory

References

- [1] Electron-ion collider at Brookhaven National Laboratory, conceptual design report 2021, https://www.bnl.gov/EC/ files/EIC_CDR_Final.pdf
- [2] D. Ratner, "Microbunched electron cooling for high-energy hadron beams", *Phys. Rev. Lett.*, vol. 111, p. 084802, Aug. 2013.
- [3] G. Stupakov, "Cooling rate for microbunched electron cooling without amplification", *Phys. Rev. Accel. Beams*, vol. 21, p. 114402, Nov. 2018.
- G. Stupakov and P. Baxevanis, "Microbunched electron cooling with amplification cascades", *Phys. Rev. Accel. Beams*, vol. 22, p. 034401, Mar. 2019.

- [5] P. Baxevanis and G. Stupakov, "Transverse dynamics considerations for microbunched electron cooling", *Phys. Rev. Accel. Beams*, vol. 22, p. 081003, Aug. 2019.
- [6] P. Baxevanis and G. Stupakov, "Hadron beam evolution in microbunched electron cooling", *Phys. Rev. Accel. Beams*, vol. 23, p. 111001, Nov. 2020.
- [7] W. F. Bergan, P. Baxevanis, M. Blaskiewicz, E. Wang, and G. Stupakov, "Design of an MBEC cooler for the EIC", presented at IPAC'21, Campinas, Brazil, May 2021, paper TUPAB179, this conference.
- [8] R.W Hockney and J.W Eastwood, *Computer simulation using particles*. New York, NY, USA: Taylor & Francis, 1988.

Backup Slides

Induced Wake (275 GeV)

NATIONAL LABORATORY

Start of 2nd Amplifier

BROO

LABORATORY

End of 2nd Amplifier

Start of Kicker

One Amplifier w/o Modulator/Kicker Plasma Oscillations

NATIONAL

LABORATORY

One Amplifier w/o Modulator/Kicker Plasma Oscillations (Wake)

Parameters

Proton Energy (GeV)	100	275
Protons per Bunch	6.9e10	6.9e10
Proton Bunch Length (cm)	7	6
Proton Emittance (x/y) (nm)	30/2.7	11.3 / 1
Proton Fractional Energy Spread	9.7e-4	6.8e-4
Electron Normalized Emittance (x/y) (mm-mrad)	2.8 / 2.8	2.8 / 2.8
Electron Bunch Charge (nC)	1	1
Electron Bunch Length (mm)	14	7
Electron Peak Current (A)	8.5	17
Electron Fractional Energy Spread	7e-5	5e-5
Electron/Proton Betas in Modulator (m)	30/39	100/39
Electron/Proton Betas in Kicker (m)	10/39	8/39
Modulator Length (m)	39	39
Number of Amplifier Drifts	2	2
Amplifier Drift Lengths (m)	48.5	48.5
Kicker Length (m)	39	39
R56 in First Two Electron Chicanes (cm)	2.0	0.68
R56 in Third Electron Chicane (cm)	-5.20	-1.52
R56 in Proton Chicane (cm)	-0.52	-0.22
Proton Horizontal Phase Advance (rad)	4.46	4.79
Proton Horizontal Dispersion in Modulator / Kicker (m)	0.76	1
Proton Horizontal Dispersion Derivative in Modulator/Kicker	-0.023 / 0.023	-0.023 / 0.023
Electron Betas in Amplifiers (m)	11.2	2.5
Horizontal / Longitudinal IBS Times (hours)	2.0/2.5	2.0/2.9
Horizontal / Longitudinal Cooling Times (hours)	1.7 / 1.9	1.3 / 1.8

