

Optimal Field Shape, Accelerating Positron Bunch in Plasma Wakefield*

PA(29)

*This work is supported by National Research Fundation of Ukraine "Leading and Young Scientists Research Support", grant agreement # 2020.02/0299.

Roman Ovsiannikov¹, Vasyl I. Maslov^{1,2}, Iryna P. Levchuk², Ivan N. Onishchenko²

¹⁾ Karazin Kharkiv National University, Kharkiv, Ukraine
 ²⁾ National Science Center Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine

Accelerating Gradient Problem

In conventional accelerators, due to breakdown on metal walls, accelerating gradients are currently limited to about 100 MV / m (in reality, 20-30 MV / m). Esarey E. et al. 2009

 Plasma wakefield accelerators are capable of withstanding accelerating gradients up to 100 GV / m.
 Leemans W.P. et al. 2014; Gonsalves A.J. et al. 2019; Blumenfeld I. et al. 2007.

High-quality Accelerated Beams

Over the entire length of the accelerated beam, it is necessary to achieve : $E_z(z) = const$.

The Principle of Building a Bunch-Witness

The assumption of long witnesses with a constant field along its entire length.

Each piece of long witness creates a shelf locally, in its area.

Schematic view of a witness bunch made of pieces of constant density.

The method for finding the required distribution for a witness bunch is to achieve a linear field distribution, for each piece of the bunch independently (the previous parts of the bunch should not significantly affect the next)

Obtaining a Small Witness-Bunch, for a Very Long Driver-Bunch

Figure 1: The on-axis wakefield excitation E_z by bunch-driver and plateau formation on $E_z(\xi)$ by bunch-witness, $\xi = z - V_b t$. Densities of bunches n_b on the axis are shown by brown. Average field <E> is shown by red. Plasma electron density is shown to be blue as a function of the coordinate ξ along the plasma. The length of bunch-driver is equal to 3.8 of wave length. The maximum current of bunch-driver is equal to $I_b=2.04kA$. The maximum current of bunchwitness is equal to $I_b=1.326 kA$.

Obtaining a Small Witness-Bunch, for a Small Driver-Bunch

Figure 2: The on-axis wakefield excitation E, by bunch-driver and plateau formation on $E_{r}(\xi)$ by the second bunch, $\xi = z - V_h t$. Densities of bunches n_b on the axis are shown by brown. Average field <E> is shown by red. Plasma electron density is shown to be blue as a function of the coordinate ξ along the plasma. The length of uniform bunch-driver is equal to 0.09 of bubble length. The maximum current of bunch-driver is equal to $I_{\rm h}$ =2 kA. The maximum current of the second bunch is equal to $I_{\rm b}$ =1.6 kA.

Obtaining a Long Witness-Bunch, for a Small Driver-Bunch

Figure 3: The on-axis wakefield excitation E_z by bunch-driver and plateau formation on $E_z(\xi)$ by bunch-witness, $\xi = z - V_b t$. Densities of bunches n_b on the axis are shown by brown. Average field <E> is shown by red. Plasma electron density is shown to be blue as a function of the coordinate ξ along the plasma. The length of uniform bunch-driver is equal to 0.09 of bubble length. The maximum current of bunch-driver is equal to $I_b=2$ kA. The maximum current of bunch-witness is equal to $I_b=0.4$ kA.

Obtaining a Very Long Witness-Bunch, for a Small Driver-Bunch

Figure 4a: Current distribution for a witness bunch. Dimensionless parameter, measured in 10 kA.

Figure 4: The on-axis wakefield excitation E_z by bunch-driver and plateau formation on $E_z(\xi)$ by bunch-witness, $\xi = z - V_b t$. Densities of bunches n_b on the axis are shown by brown. Average field <E> is shown by red. Plasma electron density is shown to be blue as a function of the coordinate ξ along the plasma.

The length of uniform bunch-driver is equal to 0.3 of bubble length. The maximum current of bunch-driver is equal to $I_b=1$ kA. The maximum current of bunch-witness is equal to $I_b=1.19$ kA.

Simulation results

Figs. 1 - 2 show small positron witness-bunches with large and small transformer ratios, respectively (the transformer ratio is the ratio of the maximum accelerating field in the witness-bunch to the maximum decelerating field in the driver-bunch region). It can be seen that for a very long driver, it is possible to achieve not only a self-consistent field of plateau type, in the bunch-witness region, but also a very large transformer ratio, which, in fact, is responsible for the degree of acceleration.

Figs. 3 - 4 show the simulation results for positron witness-bunches of maximum length for driver-bunches of various lengths. It is seen that in both cases the accelerated witness-bunches occupy a rather large area of the bubble. However, the transformer ratio does not reach unity.

Conclusions

The formation of a longitudinal accelerating field for positron witness-bunches of various lengths is investigated.

Very long positron witness-bunches were obtained, which form a self-consistent accelerating field, such as a plateau.

For this system, the assumption about the local influence of small sections of the positron witness-bunch on the longitudinal accelerating field was confirmed.

References

[1] S. Romeo, M. Ferrario, A.R. Rossi Phys. *Rev. Ac-cel.Beams.* 23 (2020)071301.

- [2] T. Katsouleas *et al. Particle Accelerators*.22 (1987) 81.
- [3] A. Caldwell, E. Gschwendtner, K. Lotov *et al*. arXiv:1812.08550v1
 [physics.acc-ph] 20 Dec 2018.
- [4] A.P. Sosedkin, K.V. Lotov *Nucl. Instr. & Meth. in Phys. Res.* A. 829 (2016)350.

Acknowledgements

This work is supported by National Research Fundation of Ukraine "Leading and Young Scientists Research Support", grant agreement # 2020.02/0299.

THANK YOU FOR YOUR ATTENTION