

SIMULATION CALCULATION OF COMPACT THZ FACILITY AT IUAC, NEW DELHI

Paper ID: TUPAB106 Type: Poster Presenter : Joydeep Karmakar Affiliation: IUAC, New Delhi

IPAC 21, May 24 - 28

Overview and work objective

System: Delhi light source (DLS) at IUAC, New Delhi:

RF gun:

115 MV/m

4 - 8 MeV

0.61 T

- Compact pre-bunched FEL THz facility under commissioning (THz range: $\sim 0.2 3$ THz).
- Will use 2, 4, 8, 16 micb with adjustable micb separation to obtain coherence and tunability. ۶

Present status : RF gun conditioning and dark current studies ongoing. [*Proc of IPAC 21 ; ID: TUPAB105*]

Objective: Optimize beam optics simulations for optimizing radiation output (presented for $\sim 0.5 \& 2 \text{ THz}$).

Beam optics simulations

achieved by

Optimizations aimed to :

Minimize line width

- beam matching at undulator entrance (to minimize betatron amplitude)
- keep energy spread to as min possible
- **Increase spectral intensity**
- Intensity (I) :

 $I \propto N_m N_b^2 B_0^2$

 $B_0 = \frac{1}{N} \sum_{i=1}^{N} e^{i\omega t_i}$

- N_m : no of micb
- N_h : e⁻ s in a micb
- N: no of e⁻ s in macro-bunch Bunching factor:
 - ω : frequency of interest
 - t_j : temporal position of jth particle
- maximizing BF through undulator.

J Karmakar, IPAC 21 (TUPAB106)

tuning solenoid + quad singlet.

proper selection of cavity field & RF phase, no of micb, micb charge, transverse & temporal size at PC.

micb separation and charge, use quad singlet.

Parameter	$\sim 0.5 \ THz$	$\sim 2.0 \text{ THz}$
Charge/micb	15 pC	15 pC
No. of micb	4	8
rms transverse size @PC	9 mm	11 mm
rms temporal size @PC	85 fs	85 fs
micb separation @PC	2350 fs	626 fs
particles/micro-bunch	10000	10000
Beam energy	6.44 MeV	8 MeV
rms energy spread @ und.	36.5 keV	30 keV
Cavity field	88 MV/m	110 MV/m
Injection phase	30 ^o	30 ^o
undulator field	0.6 T	0.273 T

Beam optics simulations Simulation results for 0.5 THz & 2 THz:

 σ_X

 $\sigma_{\rm Y}$

2.5

 $\sigma_v \le 0.2$ mm for both frequencies. varying micb sep, BF is maximized

Long distb through und start, mid & exit. (explains dip in the BF curve)

Beam optics simulations Analyzing bunch behaviour inside undulator

Compared results with and without space charge.

- \rightarrow No dip observed for w/o space charge
- \rightarrow Energy spread factor of 4 lower w/o space charge.

Inference:

- Space charge introduces dynamic energy spread in micbs & macro bunch structure.
- Energy spread cause dispersive motion of micbs in undulator causing longitudinal expansion of micb.
- the outward moving particles of adjacent micb repel when very close, slowing down the relative motion of opposite moving particles and thus forming ordered cluster again.

Radiation calculation:

Computation of radiation field and intensity

- Used the simulated trajectory data
 - $\vec{r}_e(x, y, z, t) \qquad \vec{\beta}(\beta_x, \beta_y, \beta_z, t)$
- $\stackrel{>}{E} \text{ to compute E field in advanced time steps}$ $\vec{E}(\vec{r}_{ob}, t_{ad}) = \frac{q}{4\pi\varepsilon_0} \left[\frac{(\vec{n} \vec{\beta})}{R^2 \gamma^2 (1 \vec{\beta}.\vec{n})^3} + \frac{\vec{n} \times \left[(\vec{n} \vec{\beta}) \times \dot{\vec{\beta}} \right]}{cR(1 \vec{\beta}.\vec{n})} \right]$

where,
$$t_{ad} = t + \frac{|\vec{r}_{ob} - \vec{r}_e(t)|}{c}$$
, $\vec{R}(t) = \vec{r}_{ob} - \vec{r}_e(t)$ and $\vec{n} = \frac{\vec{R}}{|\vec{R}|}$.

- > Field in frequency domain $\vec{\epsilon}(\omega)$ computed by fourier transform.
- > finally computed spectral intensity using:

$$\frac{d^2 I}{d\Omega d\omega} = 2.|\vec{\varepsilon}(\omega)|^2$$

Two peaks corresponding to micb structure before and after diffusion.

