SIMULATION STUDIES FOR DARK CURRENT SIGNATURE FROM DLS RF GUN

Paper ID: TUPAB105 Type: Poster Presenter : Joydeep Karmakar Affiliation: IUAC, New Delhi

IPAC 21, May 24 - 28

Introduction and work objective

- System: Delhi light source (DLS) at IUAC: Compact THz facility based on pre-bunched FEL under commissioning (THz range: ~0.2 – 3 THz).
- Proceedings of this conference; ID: TUPAB106, WEPAB131
- **Present status** : RF gun conditioning done upto ~ 1 MW, to be done at higher powers.
- **Objective:** Simulation study of dark current expected during RF conditioning.

RF gun:

- → 2860 MHz,
- 2.6 cell Cu cavity.
 Photocathode:
 Cu plug.
 Max peak field:
 115 MV/m
 Energy range:

4-8 MeV

Beam line schematic for dark current detection

Identifying dark current source

Dark Current (dc) :

Unwanted field emission electron current that travels down the beam line.

Field emission sources: Irises, PC edge, any scratch on PC.

ASTRA Simulations with single e⁻ at 8 phases of RF (45° apart) from the irises and PC edge.

Main dc source: PC edge & PC surface scratches

Single e⁻ simulations @ 30 MV/m

Multi particle simulation from PC edge

Input Parameters: $\beta \sim 150$, $\Phi = 4.5 \text{ eV}$ Ea = 29 MV/m emitter ar ~ 3x10⁻⁸ mm².

Fowler Nordheim Equation $I_{FN} = \frac{1.54 \times 10^{-6} \times 10^{4.52/\sqrt{\phi}} A_e (\beta E \sin \theta)^2}{\phi} \times \exp\left(-\frac{6.53 \times 10^9 \phi^{1.5}}{\beta E \sin \theta}\right)$

Total current in RF cycle ~ 0.21 mA Typical dc emission time ~ 1 fs [*J. H. Han, DESY THESIS 2005-045*] Total charge in a RF cycle ~ 0.21 atto-C

Assuming all points on PC edge emits Charge of ring of 16mm dia ~ 35 pC FWHM of FN distribution: ~ 31 ps (*RF period* =350 ps)

The FN and energy scan plot :

- The phase overlap region decides the energies in the dark current.
- At higher fields the overlap is higher
- At 29 MV/m the phase overlap ~ 55°-69° with energy range ~ 0.73 MeV to 0.00 MeV.

Ring distribution @ (LEFT) PC, cavity exit, (RIGHT) YAG screen.

Multi particle simulation from PC edge

Simulation results:

- energy range of dc : 0.003 MeV to 0.7 MeV @ 29 MV/m.
- Analysed three energies (within 5%) viz. 0.06 MeV, 0.12 MeV & 0.18 MeV at a fixed solenoid field (0.0352 T)
- Traced the particle trajectories & distribution in screen for each energy.

Outcome Tuning the solenoid – tunes different distribution of the energies

• At a given cavity & solenoid field - dominant dc energies can be studied

Dark current detection at DLS

RF Conditioning :

RF pulse width: 4 μ s, Pulse rep. Rate: 30 Hz P_{fwd} into cavity increased from low level max P_{fwd} ~ 1 MW so far.

Observations:

- A persistent dc background + occassional random bright spots.
- The dc background pattern changed with solenoid current.
- At higher solenoid currents the background intensity dropped. Same observed in simulation

Future scope: Further study when conditioned at higher powers

Thank You

Other group members:

x/y/z:

Auto: X

7 U/s (Mono,caINT)

Dr. S. Ghosh Dr. B. K. Sahu Mr. Padmanava Patra Mr. Bappa Karmakar Ms Madhuri Aggarwal Mr. Ashish Sharma