

Novel open cavity for rotating mode SLED type rf pulse compressors

Xiaowei Wu xiaowei.wu@cern.ch Alexej Grudiev

25-MAY-2021

Overview of X-band passive pulse compressors

SLED type pulse compressors with resonant cavity

SLEDII type pulse compressor with delay lines

Novel bowl-shape open cavity

SLED type resonant cavity working at $TE_{1,2,i}$ rotating RF source quasi-spherical mode

index i depends on the radius of the cavity (R_{cav})

High quality factor with compact size

 $Q_0 \sim 240000$ in TE_{1,2,13} mode with R_{cav}=16.3 cm

Open boundary at the top the cavity

low field at the top area, connect to stainless steel flange (open boundary) and used for vacuum pumping

suppress many parasitic modes

Bowl shape symmetric geometry

machining by lathe with high accuracy and low cost no brazing needed for the cavity fabrication

Output

Bowl-shape open cavity

Requirement from CLIC rf pulse compression system

Firstly studied for CLIC rf pulse compression system Can also be applied to other pulse compression systems

5/17/2021

	Correction cavity	Storage cavity
Required Q_0	60000	240000
Mode selection	TE _{1,2,4}	TE _{1,2,13}
Mode Q_0	~74000	~240000

Correction cavity design

Frequency [GHz] Q_0 Working mode 12.0001 74649 Parasitic mode1 11.7295 16449 Parasitic mode2 12.2930 14990

TE_{1,2,4} rotating mode

Correction cavity with E-rotator

E-rotator converts $TE_{1,0}$ rectangular waveguide mode to $TE_{1,1}$ circular waveguide mode and excites $TE_{1,2,4}$ rotating mode in the open cavity

Storage cavity design

	Frequency [GHz]	Q_0
Working mode	11.9999	244799
Parasitic mode1	11.9686	50949
Parasitic mode2	12.0458	61082

TE_{1,2,13} rotating mode

Storage cavity with E-rotator

E-rotator converts $TE_{1,0}$ rectangular waveguide mode to $TE_{1,1}$ circular waveguide mode and excites $TE_{1,2,13}$ rotating mode in the open cavity

Parasitic modes suppression for storage cavity

Add absorption material such silicon carbide at the top of the cavity Use $TE_{1,2,12}$ mode to get larger mode frequency separation

Couple iris optimization to reduce maximum surface field/pulse heating/...

Finalize the mechanical design and fabrication

Lower-power rf measurement and high-power test of the bowl-shape open cavity

Reference

[1] Z. D. Farkas, H. A. Hogg, G. A. Loew, and P. B. Wilson, in *Proceedings of 9th International Conference on High Energy Accelerators*, (SLAC, 1974), p. 576.

[2] P. B. Wilson, Z. Farkas, and R. D. Ruth, SLED II: A new method of RF pulse compression, Stanford Linear Accelerator Center Technical Report, 1990.

[3] B. Woolley, I. Syratchev, and A. Dexter, *Control and performance improvements of a pulse compressor in use for testing accelerating structures at high power*, <u>Phys. Rev. Accel. Beams **20**</u>, 101001 (2017).

[4] I. Syrachev, V. Vogel, H. Mizuno, J. Odagiri, Y. Otake, and S. Tokumoto et al., in Proceedings of the 17th International Linear Accelerator Conference (LINAC-1994), Tsukuba, Japan, 1994, (KEK, Tsukuba, Japan, 1994), pp. 475–477.

[5] J. W. Wang, S. G. Tantawi, C. Xu, M. Franzi, P. Krejcik, G. Bowden, S. Condamoor, Y. Ding, V. Dolgashev, J. Eichner, A. Haase, J. R. Lewandowski, and L. Xiao, *Development for a supercompact x-band pulse compression system and its application at slac*, <u>Phys. Rev. Accel. Beams 20</u>, 110401 (2017).

[6] P. Wang, H. Zha, I. Syratchev, J. Shi, and H. Chen, *rf design of a pulse compressor with correction cavity chain for klystron-based compact linear collider*, <u>Phys. Rev. Accel. Beams 20</u>, 112001 (2017).

[7] Y. Jiang, H. Zha, P. Wang, J. Shi, H. Chen, W. L. Millar, and I. Syratchev, *Demonstration of a cavity-based pulse compression system for pulse shape correction*, Phys. Rev. Accel. Beams **22**, 082001 (2019).

[8] A. Grudiev, CERN CLIC - Note No. 1067, 2016.

[9] M. Franzi, J. Wang, V. Dolgashev, and S. Tantawi, *Compact rf polarizer and its application to pulse compression systems*, <u>Phys. Rev. Accel. Beams 19</u>, <u>062002 (2016)</u>.

[10] Y. Jiang, H. Zha, J. Shi, M. Peng, X. Lin and H. Chen, "A Compact X-Band Microwave Pulse Compressor Using a Corrugated Cylindrical Cavity," in *IEEE Transactions on Microwave Theory and Techniques*, vol. 69, no. 3, pp. 1586-1593, March 2021, doi: 10.1109/TMTT.2021.3053913.

[11] C. Jin, I. Syrachev, CERN CLIC - Note No. 1166, 2020.

