Application of Plasma Lenses as Optical Matching Device for Positron Sources at linear colliders M. Formela, N. Hamann,

K. Floettmann, G. Moortgat-Pick, S. Riemann

Motivation -

Plasma Lens for Optical Matching

Motivation:

To achieve a twothousandfold increase in luminosity from the SLC (3e30 cm⁻²s⁻¹) to the proposed ILC (7500e30 cm⁻²s⁻¹), it is necessary to push all technological boundaries. One area of improvement in particular is the particle number, which is primarily determined by the capture section and specifically by its optical matching device.

This is where the application of a plasma lens could potentially open up new possibilities

Advantages of Plasma Lenses over conventional OMDs

	Current ILC Options		
	Quarter Wave Transformer (QWT)	Flux Concentrator (FC)	Plasma Lens (PL)
Dephasing	- helical	- helical	+ sinusoidal
Chromaticity	- high	+ low	+ low
Eddy current in rotating target	+ manageable	- problematic for fast rotation	++ spatially confined field
	QWT proposed for ILC		

Principle of an Active Plasma Lens

<u>Optimization Results of</u> <u>Tapered Active Plasma Lens as OMD</u>

41.7% captured e⁺ within DR energy acceptance of .75% (14 mm long. Cut) \rightarrow ~50% improvement over ILC's current proposed OMD (QWT) design

	Symbol	Optimal Value
PL Length	Z _{max}	6 cm
Opening Radius	R ₀	3.8 mm
Tapering Order	n	1
Tapering Strength	g	136 m ⁻¹
PL-SWT distance	d	1 cm
SWT Phase	φ 0	220°

Optimized Parameters at $I_0 = 3000 \text{ A}$

Tapered PL cavity profile: $R(z) = R_0(1+gz)^n$

Captured Yield Deviation for deviations in optimized parameter by Parameter Symbol -10% offset +10% offset PL Length -0.3% yield -0.2% yield Zmax **Opening Radius** R_0 -0.1% yield -1.1% yield Tapering Strength -0.2% yield -0.3% yield g Current strength -1.5% yield +1.2% yield 0 **PL-SWT** distance d +0.2% yield -0.2% yield SWT Phase -0.4% yield -0.5% yield **Φ**0

Captured Yield Stability of the Opimum

IPAC2021

Simulations with ASTRA

Dephasing Advantage of the Plasma Lens

The azimuthal magnetic field of the plasma lens leads to a sinusoidal trajectory (helical for QWT), which results in an effectively shorter path and therefore smaller longitudinal spread, the so called dephasing.

<u>Summary</u>

- Theoretical advantages of PLs over conventional OMDs in Dephasing, Chromaticity & Target eddy currents
- PL with ~50% more e⁺ yield over ILC's currently proposed OMD
- Stability of e⁺ yield within ±2% for single parameter deviations of ±10%

<u>Outlook</u>

- Simulation with entire pre-accelerator structure
- Current ILC plan: 4y prelab phase (starting April 2022)
- Exploring technical details by prototyping a Plasma Lens as OMD
 - could have impact on final ILC design