

Hierarchical intelligent real-time optimal control for LLRF using time series machine learning methods and transfer learning

Reza Pirayesh, Jorge Diaz Cruz, Sandra Biedron, Manel Martinez University of New Mexico

Nonlinear Model predictive control

System: LLRF nonlinear model

MPC's optimization: Nonconvex optimization

MPC's constraints: Constraints on RF amplifier, constraints on voltage and phase

MPC's cost function: Stateerror and energy

Hierarchical intelligent learning algorithm

□ 1)Do MPC offline and produce states and control input data

□ 2)Obtain deep learning surrogate model (LSTM, RNN) from the data in step1

□ 3)Apply the surrogate model to the cavities and do the optimal control online

4)If the difference between the measurements and the predicted states is more than a threshold for each time step:

- > A)Apply transfer learning to fine-tune the surrogate model with the measurements of the cavities
- **B**) Do MPC offline and produce states and control input data
- > C) Apply transfer learning to fine-tune the surrogate model with the data from step B

□ 5) Go to step 3

Transfer learning

Conclusion - Future Work

- 1) Online optimal control is going to be obtained with MPC and surrogate model
- 2) The Constraints are going to be satisfied for LLRF
- 3)Accurate system identification, optimal control, and reduction of computational cost are going to be obtained through surrogate model and transfer learning
- 4) In the future, this approach will be updated for Microphonics and each cryomodule
- 5) In the future, this approach will be updated into distributed intelligent hybrid control for all the components of particle accelerator.

Acknowledgement

- This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under award number DE-SC0019468.
- This work was performed under Contract No. DE-AC02-76SF00515 supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.
- This research uses resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility.
- This research uses resources of Element Aero for Computing resources and travel funding
- This research uses hardware at ILS

Selected references

- 1) C. Serrano, "LCLS-II System Simulations: Physics," Oct. 2015
- 2) Kumar, S. S. P., Tulsyan, A., Gopaluni, B., & Loewen, P. (2018). A deep learning architecture for predictive control. *IFAC-PapersOnLine*, *51*(18), 512-517.
- 3) Pan, S. J., & Yang, Q. (2009). A survey on transfer learning. *IEEE Transactions on knowledge and data engineering*, *22*(10), 1345-1359.
- 4) Ljung, L., Andersson, C., Tiels, K., & Schön, T. B. (2020). Deep learning and system identification. *IFAC-PapersOnLine*, 53(2), 1175-1181.