Reconstruction of linear optics observables using Supervised Learning

Elena Fol H. Garcia Morales, R. Tomás

CERN

Motivation

Supervised Learning

- β -function at IPs is computed by performing k-modulation technique
- β -function around IPs provides important for optics corrections
- Normalized dispersion : important observable, independent of Beam Position Monitors calibration: several beam excitations with momentum shifts are required
- \rightarrow Time costly measurements procedure
- \rightarrow Measurements are not always possible
- → Missing information in correction computation and historical data analysis

Reconstruction of normalized dispersion

- Input: simulated phase advance deviations, including noise, 1024 input variables
- **Output**: normalized dispersion $\Delta D_x / \sqrt{\beta_x}$, 1024 output targets
- Model: Ridge Linear Regression
- 80 000 samples (80% training, 20% test)

Agreement between simulated and reconstructed values in one exemplary simulation

Statistics obtained from 1000 simulations

Simulated rms $\Delta D_x / \sqrt{\beta_x}$: 0.0802 \sqrt{m} Relative RMS error of prediction: 7%

Reconstruction of β-function around Interaction Points

- Input: simulated phase advance deviations given noise (beam 1 and 2, horizontal and vertical planes), 2048 input variables
- **Output**: $\Delta\beta$ errors at 2 BPMs left and right from IPs 1, 2, 5 and 8 (32 targets in total)
- Ridge Regression, 80 000 training samples, (80% training, 20% test)

Conclusions & future work

	$\beta_{x,y}$	$D_x/\sqrt{\beta_x}$
$R_{train/test}^2$	0.995/0.996	0.81/0.8
MAE _{train/test}	4.49 / 4.61 [m]	0.0058 / 0.006 [\sqrt{m}]
rms _{residual} rms _{true}	0.9%	7%

* Better performance of regression model for the reconstruction of β -function due to significant smaller amount of output targets

- \rightarrow Improvements are still possible
- → Further steps: boosting the prediction accuracy: more sophisticated regression models?

Achieved results:

- Providing estimates of optics functions, when time costly measurements techniques cannot be performed.
- Reconstruction of relevant observables, without performing dedicated measurements of these observables.
- ✓ Providing missing data
- ✓ Potential to **speed up** optics measurements and corrections.