THPAB036

Superconducting Phase shifter design for the afterburner at the European XFEL

Authors: V. Grattoni, J. E. Baader, S. Casalbuoni

Abstract: At the European XFEL, a superconducting afterburner is under design for the SASE2 hard X-ray beamline. It will consist of 5 undulator modules. One module corresponds to two superconducting undulator (SCU) coils of 2 m length plus one phase shifter. Such an afterburner will enable photon energies above 30 keV. Superconducting (SC) phase shifters will be installed in each undulator module to keep the correct phase delay between the electron beam and photon beam. In this contribution, we present the required SC phase shifter parameters to enable operation in the electron beam energy range 11.5-17.5 GeV. We also analyze different magnetic designs satisfying the calculated specifications.

The Afterburner* at the European XFEL

Superconducting Phase Shifter Specifications

- Needed phase integral of $PI \ge 1.5 \times 10^{-5} T^2 m^3$ for continuous tunability in the photon energy ranges 28 -100 keV and 12.3 60 keV for the electron beam energy of 17.5 GeV and 11.5 GeV respectively
- In order to have a compact magnetic structure, the magnetic length of the phase shifter should be minimized
 - We define the magnetic length to include all magnetic fields except for $1.5 \times 10^{-4} Tm$ of first field integral at each end of the phase shifter
- The interference with the magnetic field of the undulators should be avoided
- To limit the heat load from the current leads, a maximum current of $I_w = 20$ A is considered
- First field integral $I_1 < 1.5 \times 10^{-4} Tm$ and second field integral $I_2 < 10^{-4} Tm^2$ at the exit of the phase shifter

Phase Shifter Geometry

- y_h : yoke height
- p_w : pole width
- p_h : pole height
- c_w : racetrack width
- $-c_h$: racetrack height, it is equal to p_h
- I_{ext} , I_0 : respectively current in the external and central racetrack
- The racetracks are build from an insulated round wire with a total diameter (conductor+insulation) of 0.254 *mm*

Grattoni V., Baader J. and Casalbuoni S., IPAC2021

Simulated Designs

20

7.72

90

 $N_{\rm turns}$: total number of wire turns in the racetrack

5.608

15

6.633

10.16

Case 3

1185

 1.616×10^{-5}

80

Grattoni V., Baader J. and Casalbuoni S., IPAC2021

Simulated Designs

20

7.72

90

15

 1.616×10^{-5}

80

10.16

6.633

5.608

1185

Case 3

Grattoni V., Baader J. and Casalbuoni S., IPAC2021

Magnetic Properties of the Selected Case

European XFEL

Field Integrals and Phase Integral

magnetic length: 80 mm

Conclusions

- The SCU afterburner under investigation at the European XFEL is characterized by five cryomodules (cryostats). Within each module there are two SCU coils, correction coils and a SC phase shifter
- The best design in terms of compactness and magnetic length is:
 magnetic length: 80 mm
 mechanical length: 90 mm

The requirements for the phase shifter have been achieved: $I_1 < 1.5 \times 10^{-4} Tm \text{ and } I_2 < 10^{-4} Tm^2$ $PI \ge 1.5 \times 10^{-5} T^2 m^3$

The contribution of the iron in the design is fundamental to confine the magnetic field, therefore reducing the magnetic length and helping to keep a moderate number of wire turns
European XFEL