A Coupon Tester for Normal Conducting High-Gradient Materials

MOPAB371

John W. Lewellen, D.V. Gorelov, D. Perez, E.I Simakov, M.E. Schneider

25 May 2021

— EST.1943 —

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNS/

LA-UR-21-24614

Outline

- What is a coupon tester?
- Why not use a TM₀₁₀-mode cavity?
- Design Considerations
- Candidate Geometries
- Conceptual Assembly
- Conclusions and Timeline

A few notes up front...

This work is supported by the Los Alamos LDRD program.

It is part of an effort to develop theoretical models of the breakdown process, to *ab initio* design new materials for high-gradient operation, and to test those materials in a C-band test stand at Los Alamos.

What is a coupon tester?

- Higher fields (E, H, modified Poynting vector) are associated with higher breakdown rates, all else equal.
- A coupon tester is a specially designed RF structure to:
 - Allow high RF field gradients (electric and magnetic, in our case) to be applied to a removable part of the structure;
 - Have the highest fields in the structure, be on that removable part.
- So, a coupon tester lets us explore the behavior of candidate materials for high-gradient structures, at high fields, without having to build a complete structure
 - Faster to prepare to test a new material
 - -Less expensive
 - Allows easy "post-mortem" examination of the surface post-testing

Why not use a TM₀₁₀-mode cavity with a removable back wall, like the SLAC/BNL/UCLA RF guns?

The TM₀₁₀-mode "pillbox" cavity has:

- High current at the edge of the back wall, relative to the peak cavity fields ~1.4 A/mm / (MV/m)
- High ratios of E and H fields on the cavity surface, to the coupon surface

A purpose-designed coupon tester cavity has:

- Low current at the coupon/cavity boundary, relative to the peak cavity fields, ~0.07 A/mm / (MV/m)
- Definitively higher E and H fields on the coupon, than on the cavity surface

Design considerations

<u>RF</u>

- Defining $E_{c(s)}$ as the peak E-field on the surface of the coupon (cavity excluding the coupon), and $H_{c(s)}$ as the corresponding H-field, maximize E_c / E_s , and H_c / H_s .
- Keep the surface current across the cavity / coupon joint as low as possible
- Good separation from neighboring modes
- Low fields on the coupler, esp. coax tip

Mechanical

- Keep the coupon as simple as possible easy to machine, etc.
- Provide a means of temperature stabilizing the coupon
- Separate the RF and vacuum seal functions at the coupon / cavity boundary

Desirable Diagnostics (beyond reflected power)

- An on-axis port to measure field emission and breakdown current
- Cavity field probe
- Optical ports to view coupon

Candidate geometries

TM_{020} -like mode

- ✓ Smaller, simpler construction
- ✓ Lower RF power needed
- ► Low H_c/H_s ratio
- Probe ports (optical, field)
 problematic

- ✓ More uniform field ratios
- Good options for probe port placement
- More complex fabrication
- Physically larger

Parameter	TM ₀₂₀ -like	TM ₀₄₁ -like
Q ₀	16,800	23,500
E_c/E_s	2.89	2.33
H_c/H_s	1.42	2.33
$R_e (M\Omega/m^2)$	$5.7 \cdot 10^{3}$	$3.10 \cdot 10^3$

Conceptual Assembly

Conclusions and Timeline

- We have developed two coupon tester variants for normal-conducting high-gradient materials.
- Both use a rectangular-to-coaxial power coupler
- We will downselect, finalize and fabricate the preferred design, with the goal of having a coupon tester operational in early 2022.

Also at IPAC:

MOPAB146

Status of the C-Band Engineering Research Facility (CERF-NM) Test Stand Development at LANL, Dmitry Gorelov

MOPAB341

First C-band high gradient cavity testing results at LANL, Evgenya Simakov

MOPAB342

Design, fabrication, and commissioning of the mode launchers for high gradient Cband cavity testing at LANL, Evgenya Simakov

MOPAB362

Atomistic Modeling of the Coupling Between Electric Fields and Bulk Plastic Deformation in Rf Structures, Soumendu Bagchi

THPAB138

FEbreak: A Comprehensive Diagnostic and Automated Conditioning Interface for Breakdown Analysis and Dark Current, Mitchell Schneider