Multi-Cell Accelerating Structure Driven by a Lens-Focused Picosecond THz Pulse

Sergey P. Antipov, Sergey Vladimirovich Kuzikov (Euclid TechLabs, LLC, Solon, Ohio), Alexandr A. Vikharev (IAP/RAS, Nizhny Novgorod)

Recently, gradients on the order of 1 GV/m level have been obtained in a form of a single cycle (~1 ps) THz pulses produced by conversion of a high peak power laser radiation in nonlinear crystals (~1 mJ, 1 ps, up to 3% conversion efficiency) [1]. Such high intensity radiation can be utilized for charged particle acceleration. However, these pulses are short in time (~1ps) and broadband, therefore a new accelerating structure type is required. In this paper we propose a novel structure based on focusing of THz radiation in accelerating cell and stacking such cells to achieve a long-range interaction required for an efficient acceleration process. We present an example in which a 100 microJoule THz pulse produces a 600 keV energy gain in 5 mm long 10 cell accelerating structure for an ultra-relativistic electron. This design can be readily extended to non-relativistic particles. Such structure had been laser microfabricated and appropriate dimensions were achieved.

Laser – driven THz pulse production

THz diagnostics

Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg₂SiO₄ laser

C. Vicario,¹ A. V. Ovchinnikov,² S. I. Ashitkov,² M. B. Agranat,² V. E. Fortov,² and C. P. Hauri^{1,3,*} ¹Paul Scherrer Institute, SwissFEL, 5232 Villigen PSI, Switzerland ²Joint Institute for High Temperatures of RAS Izhorskaya st. 13 Bd. 2, Moscow 125412, Russia ³Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland *Corresponding author: christoph.hauri@psi.ch

> Received September 1, 2014; accepted October 2, 2014; posted October 22, 2014 (Doc. ID 222288); published November 20, 2014

focusing optics and wavefront optimization [28]. Under these conditions, field strength of 80 MV/cm and 27 Tesla, respectively, is feasible, which surpasses any laser-based and accelerator based THz sources by about an order of magnitude in the frequency range of 0.1–5 THz.

Focusing by parabolic mirror, time-lapse

Timing THz pulses and e-beam

Each channel has to have delay to match electron speed

Timing by optical path delay: difficult to fabricate

Dielectric Synchronization by slabs dielectric delay Copper walls Focusing parabolic mirrors -Beam channel 2 Frame 1 3 Frame 7 4 5 6 **Delay lines** ps-pulse **Beam channel** electron

Experimental Realization

PHYSICAL REVIEW ACCELERATORS AND BEAMS 19, 081302 (2016)

Short electron bunch generation using single-cycle ultrafast electron guns

Arya Fallahi,^{1,*} Moein Fakhari,¹ Alireza Yahaghi,¹ Miguel Arrieta,¹ and Franz X. Kärtner^{1,2,3} ¹Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany ²Department of Physics, University of Hamburg, Jungiusstrasse 9, 20355 Hamburg, Germany ³The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

Segmented terahertz electron accelerator and manipulator (STEAM)

Dongfang Zhang[©]^{1,2,5}*, Arya Fallahi[©]^{1,5}, Michael Hemmer[©]¹, Xiaojun Wu^{1,4}, Moein Fakhari^{1,2}, Yi Hua¹, Huseyin Cankaya¹, Anne-Laure Calendron^{1,2}, Luis E. Zapata¹, Nicholas H. Matlis¹ and Franz X. Kärtner[©]^{1,2,3}

Delay line + lens for field concentration

V/m

3.15e+05 +

3e+05

2.8e+05 -2.6e+05 -2.4e+05 -2.2e+05 -

2e+05-

1.8e+05-

1.6e+05

1.4e+05 -

100000 -

80000 -

60000 -

Focusing by silicon lens

Multi-cell structure

Accelerating structure parameters

Total input: 116 uJ of THz energy

With total of 10 uJ per cell delivered, maximum accelerating field reaches 385 MV/m.

Parameters	Silicon	Quartz
Number of cells	10	10
Dielectric	11.9	3.75
permittivity		
Cell length	0.2 mm	0.2 mm
Beam pipe diameter	0.1 mm	0.1 mm
Focal length	0.2 mm	0.2 mm
Iris thickness	0.2 mm	0.2 mm
Width	3 mm	3 mm
Length	4 mm	4 mm

Energy gain along the length of the structure

Delay line + lens – monolithic unit!

-230

These units will be stacked on top of each other to form a multi-cell structure...

High Resistivity Silicon cut by femtosecond laser Metrology: confocal laser scanning microscope (Keyence)

-249.315u

21 426.382u