

A compact, low-field, broadband matching section for externallypowered X-band dielectric-loaded accelerating structures

Y. Wei*, A. Grudiev, N. Catalan-Lasheras, R. Wegner, S. Gonzalez Anton, CERN, Geneva, Switzerland,
C. Jing, B. Freemire, Euclid TechLabs LLC, Solon, USA
H. Bursali, Sapienza University of Rome, Rome, Italy
J. Sauza-Bedolla, Lancaster University, Lancaster, UK
C. P. Welsch, Cockcroft Institute and University of Liverpool, UK *also at Cockcroft Institute and University of Liverpool, UK

Presenter: Dr. Yelong Wei

Email: yelong.wei@cern.ch or weiyealong1228@gmail.com

Introduction

- Slow wave accelerators: dielectric-loaded accelerating (DLA) structures

Ez of the TM01 mode $\left(v_{\mathrm{p}}=c\right)$

dielectric
Vacuum
dielectric

Advantages of DLA:

* Simple geometry for easy fabrication;
* No field enhancements on irises;
* Potential high gradient;
* Easy to damp HOMs;

Disadvantages of DLA:

* Low power efficiency due to high group velocity $>10 \%$ of c

Dielectric RF property

Courtesy of photo from Dr. Chunguang Jing, Euclid Techlabs.

- $\mathrm{A} \mathrm{TE}_{01 \delta}$ silver-plated resonator with a high quality factor, which is designed for testing ceramics at an X -band frequency, is used to measure the dielectric constant ε_{r} and loss tangent $\tan \delta$ of sample coupons.
- Four dielectric coupons made from the same dielectric rods as for the fabrication of the DLA structure are measured.
- A dielectric constant $\varepsilon_{r}=16.66$ and an ultralow loss tangent $\tan \delta=3.43 \times$ 10^{-5} (having error bars 0.6% of the nominal value) are obtained for the RF design of the DLA structure and matching sections which follows.

An X-band DLA structure

RF parameters for a DLA

$E_{\mathrm{S}_{-} \text {_acuum }} / E_{\mathrm{a}}$	1.07
$E_{\mathrm{s}_{\text {_dielectric }}} / E_{\mathrm{a}}$	1.00
$E_{\mathrm{s}_{\text {_metal }}} / E_{\mathrm{a}}$	0.206
$H_{\mathrm{s}_{-} \text {vacuum }} / E_{\mathrm{a}}[\mathrm{mA} / \mathrm{V}]$	1.00
$H_{\mathrm{s}_{\text {_dielectric }}} / E_{\mathrm{a}}[\mathrm{mA} / \mathrm{V}]$	9.32
$H_{\mathrm{s}_{\text {_metal }}} / E_{\mathrm{a}}[\mathrm{mA} / \mathrm{V}]$	9.09

	MCT-16
Dielectric constant ε_{r}	16.66
Dielectric loss tangent δ	$3.43 \mathrm{e}-5$
Periodical length $L[\mathrm{~mm}]$	8.3333
Phase advance	120°
Inner radius $R_{\text {in }}[\mathrm{mm}]$	3.0
Outer radius $R_{\text {out }}[\mathrm{mm}]$	4.6388
Frequency $[\mathrm{GHz}]$	11.9940
Unloaded Q_{0}	2829
$r^{\prime} / Q_{0}[\Omega / \mathrm{m}]$	9368
$r^{\prime}[\mathrm{M} \Omega / \mathrm{m}]$	26.5
$v_{\mathrm{g}} / \mathrm{c}$	
$E_{\mathrm{s}} / E_{\mathrm{a}}$	0.066
$H_{\mathrm{s}} / E_{\mathrm{a}}[\mathrm{mA} / \mathrm{V}]$	1.07
Power $100 \mathrm{MV} / \mathrm{m}[\mathrm{mW}]$	9.32
	280

EM fields in matching section

The fields in the matching section are weaker than those of DLA.

Tolerance studies

Accelerating field

Simulated S-parameters

Mode converters with a choke

DLA structure

Courtesy of photos from Dr. Chunguang Jing, Euclid Techlabs.

RF Measurement on assembly of two TE10TM01 mode converters and the DLA structure

S-parameters comparison

\square From the measurement blue line at the frequency of $11.994 \mathrm{GHz}, S_{11}^{\prime}=$ $-11.35 \mathrm{~dB}, S_{21}^{\prime}=-6.34 \mathrm{~dB}$;
\square There is a big discrepancy between the measured and simulated S parameters.

Summary \& Outlook

■ An X-band DLA structure with the TE10-TM01 mode converters and matching sections is designed, fabricated, and low-power measured.
■ The fabrication error may cause the big discrepancy between measured and simulated Sparameters.

■ Using two power splitters for 2-port testing on the DLA structure (Large power loss results from HOMs' propagation due to the asymmetries in the 4-port testing).

