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Introduction
 Most accelerator modeling uses a hard-edge approximation

– This is often very good but ignores longitudinal variation of fields
– Fringe fields are added in an impulse approximation but aren’t easy 

to derive for complex magnets
 An alternative is to use generalized gradient expansions1-4 (GGEs)

– Provide z-dependent expansions for magnetic fields
– Symplectic integration possible (e.g., elegant does it)

 We’ve developed tools to make creation and use of GGEs easy
 Applied to modeling of Advanced Photon Source Upgrade5
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Extending GGEs to include a non-zero Bz on-axis 
 Published algorithms1-4 for computing GGEs do not accurately compute non-zero Bz along the axis

 This shortcoming can be fixed if we generalize the results to
also use the longitudinal Bz on the surface

 For the rectangular boundary, we define the Fourier coefficients

 We then look for a solution for the magnetic potential that satisfies                             subject to the

Neumann boundary condition                                                    on the rectangular surface

 The generalized gradient that gives the on-axis Bz(k) = kC0,c(k) is then given by
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Tools available for computation of GGEs
 computeCBGGE computes GGE from Bρ data on a circular cylindrical 

boundary
– Suitable for straight multipoles

 computeRBGGE computes GGE from (Bx, By, Bz) data on four 
rectangular planes forming a rectangular cylinder

– Suitable for wigglers, undulators, small-angle dipoles, etc.
 Common features

– Compiled C for good performance
– SDDS file input of field data
– Create normal and skew GGE files for use with elegant6

– Auto-tune number of multipoles and gradients to minimize errors
– Available with version 2021.1 of elegant
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Lambertson septum is challenging to model
 The original APS-U vertical injection scheme7 used a Lambertson 

septum
 Integrated leakage field fairly small, but only because designed to 

cancel between two ends8

– In addition to dipole, significant normal and skew quadrupole
 Hard to mesh the stored beam chamber finely, giving coarse data

– Insufficient data for a high-quality kickmap
– Rapid z variation makes multipoles dubious

 Generated GGEs using computeRBGGE from both OPERA9-generated 
and measured data
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GGE matches measured data fairly well
 Using boundary data, 

reproduce on-axis By 
and Bz data very well

 Bx data shows a 
curious discrepancy 
confined to one section

– Could be issue In 
the measurement
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DA acceptable even if leakage 2-fold higher
 Use Pelegant10 to 

compute DA for 100 
post-commissioning 
ensembles11 including 
GGE leakage model

 Even multiplying 
leakage by 2 doesn’t 
cause a problem
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Touschek lifetime shows negligible effects
 Use Pelegant to compute 

LMA and then Touschek 
lifetime for 100 post-
commissioning ensembles 
including GGE leakage 
model

 Even multiplying leakage 
by 2 doesn’t cause a 
problem

 Conclusion: septum meets 
beam dynamics 
requirements
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All-GGE lattice of APS-U tuned to match design

 We assembled an all-GGE 
lattice model for APS-U using 
OPERA data

 Unsurprisingly, we can return to 
the design lattice by tuning the 
GGE-based elements

 Plan is to do this ahead of time 
using magnetic measurements 
to generate GGEs
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Chromatic tune footprint matches fairly well

 Tracking with Pelegant allows 
determining the chromatic tune 
footprint with conventional or 
GGE model

 Agreement is fairly good
 Note that “tuning” only matched 

the tunes and linear 
chromaticities
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Frequency maps are quite similar

 Parallel tracking with 
Pelegant allows 
determining frequency 
map even for all-GGE 
model

 Takes about 180 times 
longer than for 
conventional model

 All-GGE model best used 
for reference analysis, 
understanding, refinement 
of conventional model
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Conclusions

 Have developed several tools to make use of GGEs in accelerator 
modeling relatively painless

 Allows symplectic tracking with 3D field distributions derived from 
magnetic modeling or measurements

 Applied to APS upgrade lattice
– Modeled effects of leakage field from Lambertson septum
– Composed an all-GGE lattice and showed significant agreement 

with conventional model
 Future

– Use GGE models to better understand fringe effects in transverse 
and longitudinal gradient dipoles

– Use with measured data for all APS-U magnets
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