FORCED COUPLING RESONANCE DRIVING TERMS

A. Wegscheider, R. Tomás, CERN, Geneva, Switzerland

Abstract

At CERN's Large Hadron Collider (LHC), coupling is routinely measured using forced oscillations of the beam through excitation with an AC-dipole. The driving of the particle motion has an impact on the measurement of resonance driving terms. Recent findings suggest that the current models describing the forced motion are neglecting a local effect of the AC-dipole, creating a jump of the amplitude of the resonance driving terms. This work presents a study of the improvement of coupling measurements for typical LHC optics as well as its upgrade project, the High Luminosity LHC (HL-LHC), by using the new model.

INTRODUCTION

Precise control of linear coupling in an accelerator is important for operational control and machine safety. For LHC, coupling measurements were steadily improved over the years [1-4].

The coupling Resonance Driving Terms (RDTs) $f_{-}=f_{1001}$ and $f_{+}=f_{1010}$ are defined as [5]

$$
\begin{equation*}
f_{ \pm}\left(s_{i}\right)=\frac{\sum_{w}^{W} \delta J_{1, w} \sqrt{\beta_{x, w} \beta_{y, w}} e^{i \pi\left(\varphi_{x, w i} \pm \varphi_{y, w i}\right)}}{8\left(1-e^{2 \pi i\left(Q_{x} \pm Q_{y}\right)}\right)} \tag{1}
\end{equation*}
$$

with $J_{1, w}$ denoting the skew quadrupolar error of element $w, \beta_{x / y, w}$ its horizontal and vertical β functions, $\varphi_{x / y, w i}$ the hor. and vert. phase advances between elements w and i and $Q_{x / y}$ the hor. and vert. tunes, s_{i} is the longitudinal position of element i.

RDTs are calculated from the spectral lines of the turn-by-turn data. Since the particle's motion is affected by the driving of forced oscillation by the AC-dipole, the spectrum also undergoes a change and the measured RDTs are not equal to the free ones.

In the past, two methods were used to model the effect of the driven motion, the first is a simple rescaling of the tune dependent denominators of the RDTs, this method will therefore be called rescaling method. Using this rescaling, the driven RDTs read

$$
\begin{equation*}
f_{ \pm, x}^{\mathrm{drv}}=\frac{\sin \left(Q_{x} \pm Q_{y}\right)}{\sin \left(Q_{x}^{d} \pm Q_{y}\right)} f_{ \pm}, \quad f_{ \pm, y}^{\mathrm{drv}}=\frac{\sin \left(Q_{x} \pm Q_{y}\right)}{\sin \left(Q_{x} \pm Q_{y}^{d}\right)} f_{ \pm}, \tag{2}
\end{equation*}
$$

where $f_{ \pm, x}^{\mathrm{drv}}$ denotes the driven RDT as measured from horizontal turn-by-turn data and analogously for $f_{ \pm, y}^{\mathrm{drv}} . Q_{x / y}^{d}$ are the hor. and vert. driven tunes.

The second one [6] applies the findings of a detailed study of the driven particle motion using the equations of motion of the particle in the accelerator with AC-dipole excitation. This method provides reconstruction and compensation formulae for all optics parameters, including those that enter
into the coupling terms.

$$
\begin{align*}
f_{ \pm, x}= & \frac{1}{\sqrt{1-\lambda_{x}^{2}}} \frac{\sin \left[\pi\left(Q_{x} \mp Q_{y}\right)\right]}{\sin \left[\pi\left(Q_{x}^{d} \mp Q_{y}\right)\right]}\{ \tag{3}\\
& e^{i\left(\varphi_{s_{d}} \mathrm{~d}, x\right.} \varphi_{s_{d^{s}} s}^{x} \\
\left.f_{\mp}+\lambda_{x} \lambda_{c} e^{i\left(\varphi_{s_{d}} \mathrm{~d}, x\right.} \varphi_{s_{d s}}^{x}\right) & f_{ \pm}^{*} \\
& +2 i \sin \left(\pi\left(Q_{x}^{-}\right)\right) e^{i\left(\varphi_{s_{d}}^{\mathrm{d}, x} \varphi_{s_{d^{s}}}^{x}\right.} f_{ \pm}\left(s ; s, s_{d}\right) \\
& \left.+2 i \lambda_{c}^{\mp 1} \sin \left(\pi\left(Q_{x}^{-}\right)\right) e^{i\left(\varphi_{d_{d}}^{\mathrm{d}, x} \varphi_{s_{d s}}^{x}\right.} f_{\mp}\left(s ; s, s_{d}\right)\right\},
\end{align*}
$$

for the f terms as measured from the signal in the horizontal plane, and

$$
\begin{align*}
f_{ \pm, y}= & \frac{1}{\sqrt{1-\lambda_{y}^{2}}} \frac{\sin \left[\pi\left(Q_{x} \mp Q_{y}\right)\right]}{\sin \left[\pi\left(Q_{x} \mp Q_{y}^{d}\right)\right]}\{ \tag{4}\\
& e^{i\left(\varphi_{s_{d}}^{\mathrm{d}, x}-\varphi_{s_{d}}^{x}\right)} f_{\mp}+\lambda_{x} \lambda_{c} e^{i\left(\varphi_{s_{d}} \mathrm{~d}, x\right.} \varphi_{s_{d_{d}}}^{x}
\end{align*} f_{ \pm}^{*}, ~(4) .
$$

in the vertical plane. We used the following set of definitions:

$$
\begin{gather*}
\lambda_{z}=\frac{\sin \left[\pi\left(Q_{z}^{d}-Q_{z}\right)\right]}{\sin \left[\pi\left(Q_{z}^{d}+Q_{z}\right)\right]}, \quad \lambda_{c}=\frac{\sin \left[\pi\left(Q_{x}-Q_{y}\right)\right]}{\sin \left[\pi\left(Q_{x}+Q_{y}\right)\right]}, \\
Q_{z}^{ \pm}=Q_{z}^{d} \pm Q_{z}, \text { for } z \in\{x, y\} \tag{5}
\end{gather*}
$$

and

$$
\begin{align*}
f_{\mp}\left(s ; s, s_{d}\right)= & \frac{1}{8 i \sin \left[\pi\left(Q_{x} \mp Q_{y}\right)\right]} \tag{6}\\
& \times \sum_{j=1}^{N}\left\{\Theta\left(s_{j} ; s, s_{d}\right) J_{1} \sqrt{\beta_{x, j} \beta_{y, j}}\right. \\
& \left.\times e^{-\left[\varphi_{x, s s_{j}} \mp \varphi_{y, s s_{j}}-\left(Q_{x} \mp Q_{y}\right) \operatorname{sgn}\left(s_{j}-s\right)\right]}\right\} .
\end{align*}
$$

where Θ denotes the step function

$$
\Theta(x ; a, b)= \begin{cases}1 & \text { if } b<x<a \tag{7}\\ -1 & \text { if } a<x<b \\ 0 & \text { else }\end{cases}
$$

An asterisk $\left(f^{*}\right)$ denotes complex conjugation.
This method will be called formula method in the following.

Recent findings [7] show that the AC-dipole locally affects RDTs and introduces a jump in amplitude of the RDTs at its location. Even the detailed considerations of the formula method presented above lack such an effect.

In [8] the calculations have been extended to coupling RDTs f_{-}and f_{+}.

Driven Coupled Motion

The AC-dipole inflicts a kick on the beam at each passing, in Courant-Snyder coordinates $h_{z}^{ \pm}=z \mp i p_{z}$ this kick can be described as follows [9]:

$$
\begin{equation*}
\Delta h_{z}^{ \pm}= \pm i A_{\theta} \beta\left(s_{d}\right) \cos \left(2 \pi Q_{z}^{d} N\right) \tag{8}
\end{equation*}
$$

where $\beta\left(s_{d}\right)$ is the β function at the position of the ACdipole, A_{θ} denotes the AC-dipole kick amplitude and N is the turn number.

In normal form coordinates $\zeta_{Z}^{ \pm}$, the one-turn evolution of the particle is just a simple rotation. Normal form coordinates are calculated from Courant-Snyder coordinates (and vice-versa) by

$$
\begin{align*}
& \zeta_{z}^{ \pm}=h_{z}^{ \pm}+\left[-F, h_{z}^{ \pm}\right]+O\left(f^{2}\right) \\
& h_{z}^{ \pm}=\zeta_{z}^{ \pm}+\left[F, \zeta_{z}^{ \pm}\right]+O\left(f^{2}\right) \tag{9}
\end{align*}
$$

where F denotes the generating function. In our case (with coupling as the only non-model contribution to RDTs), F reads

$$
\begin{equation*}
F=f_{-} \zeta_{x}^{+} \zeta_{y}^{-}+f_{+} \zeta_{x}^{+} \zeta_{y}^{+}+f_{-}^{*} \zeta_{x}^{-} \zeta_{y}^{+}+f_{+}^{*} \zeta_{x}^{-} \zeta_{y}^{-} \tag{10}
\end{equation*}
$$

Consecutive application of AC-dipole kick, transformation to normal-form coordinates, one-turn rotation and transformation back to Courant-Snyder coordinates yields the particle's Courant-Snyder coordinate at turn N :

$$
\begin{align*}
h_{x}^{+}(s, N)= & h_{x}^{d+}(s, N) \\
& +2 i f_{1001}^{*} h_{y}^{d+}(s, N)+2 i f_{1010}^{*} h_{y}^{d-}(s, N) \\
& -2 i f_{1001}^{*}\left(s_{d}\right) h_{y, x}^{+}(s, N) \\
& -2 i f_{1010}^{*}\left(s_{d}\right) h_{y, x}^{-}(s, N), \tag{11}
\end{align*}
$$

From a spectral analysis of the driven signal in Eq. (11) we get the driven coupling terms

$$
\begin{align*}
f_{-, x}^{\mathrm{drv} *}= & f_{-}^{*}+\lambda_{y} f_{+}^{*} e^{2 i\left[\varphi_{s_{d^{s}}}^{y}+\pi Q_{y}\right]} \\
& -f_{-}^{*}\left(s_{d}\right) \frac{\sin \pi Q_{y}^{-}}{2 \sin \left(\pi Q_{y-}^{d}\right)} e^{i\left[\varphi_{s_{d^{s}}}^{x}-\varphi_{s_{d^{s}}}^{y}+\pi Q_{-} \operatorname{sgn}\left(s-s_{d}\right)\right]} \\
& -f_{+}^{*}\left(s_{d}\right) \frac{\sin \pi Q_{y}^{-}}{2 \sin \left(\pi Q_{y+}^{d}\right)} e^{i\left[\varphi_{s_{d^{s}}}^{x}+\varphi_{s_{d^{s}}}^{y}\right.}, \tag{12}
\end{align*}
$$

where $Q_{ \pm}=Q_{y} \pm Q_{x}$ and $Q_{y \pm}^{d}=Q_{y}^{d} \pm Q_{x}$. For the signal, as measured from the vertical plane, we get a similar expression:

$$
\begin{align*}
f_{-, y}^{\mathrm{drv}}= & f_{-}+\lambda_{y} f_{+}^{*} e^{2 i\left[\varphi_{s_{d}}^{y}+\pi Q_{y}\right]} \\
& \left.-f_{-}\left(s_{d}\right) \frac{\sin \pi Q_{y}^{-}}{2 \sin \left(\pi Q_{x-}^{d}\right)} e^{i\left[\varphi_{s_{d} s^{s}}^{x} \varphi_{s_{d}}^{y}\right.}{ }^{s} \pi Q_{-} \operatorname{sgn}\left(s-s_{d}\right)\right] \\
& -f_{+}^{*}\left(s_{d}\right) \frac{\sin \pi Q_{y}^{-}}{2 \sin \left(\pi Q_{x+}^{d}\right)} e^{i\left[\varphi_{s_{d^{s}}}^{x}+\varphi_{s_{d^{s}}}^{y} \pi Q_{+} \operatorname{sgn}\left(s-s_{d}\right)\right]} . \tag{13}
\end{align*}
$$

Analogously to before, we define $Q_{x \pm}^{d}=Q_{x}^{d} \pm Q_{y}$. The major difference is the absence of the complex conjugate of $f_{-, y}^{\mathrm{drv}}$ and f_{-}.

Equations (12) and (13) yield the analytical tools needed to improve coupling measurements in future runs of LHC and its High Luminosity upgrade project.

This method will be called new formula method in the following.

In this work a comparison between the rescaling method, formula method and the newly calculated coupling terms is shown in the frame of LHC and HL-LHC simulations. A comparison between rescaling and formula method for different phase measurement noise levels can be found in [10].

EFFECT OF COUPLING AT THE POSITION OF THE AC-DIPOLE

As Eq. (12) shows, the jump at the position of the ACdipole is proportional to the strength of the coupling term $f_{-}\left(s_{d}\right)$ at this point. The performance of the new formula compared to the previous methods is shown in a set of simulations and discussed in detail in the following subsections

Note that, in this work, only the reconstruction of the driven coupling term is considered and not the compensation - i.e. the inversion of this process - needed to obtain the actual coupling term from measurement data.

In order to simulate coupling measurements, MADX tracking is used to produce turn-by-turn data followed by an anal ysis of the tracked turn-by-turn data using our analysis tool set. The momentum reconstruction uses a second BPM and picks up coupling terms between the two BPMs. This creates an offset in the measured values.

LHC Collision Optics

First, we consider LHC collision optics that were used at the end of Run 2 in 2018.

Figure 1 shows the coupling term f_{-}. A closed coupling bump was introduced. The AC-dipole is located outside the bump and no change in f_{-}can be observed at its location.

Figure 1: Closed coupling bump in LHC Run 2 collision optics at $\beta^{*}=30 \mathrm{~cm}$. The coupling term f_{-}is zero outside the bump. At the position of the AC-dipole, the term is not affected. The formula method reconstructs well the driven coupling term f_{-}whereas the rescaling method shows poorer performance.

Figure 3: This plot shows round HL-LHC collision optics with $\beta^{*}=15 \mathrm{~cm}$. A similar coupling source is placed in the lattice as for Fig. 2 which has a larger effect on the coupling term than in the LHC case. The agreement between the new formula and the real coupling term is slightly deteriorated but still better than the previous methods.

If the AC-dipole is placed inside of the coupling bump, on the other hand, a jump at its position can clearly be observed, as shown in Fig. 2. The overall reconstruction of the previous methods is poor in comparison to the new method.

HL-LHC optics

The HL-LHC has more challenging optics and a similar coupling source as for the LHC simulations in the previous section, this creates considerably larger coupling as can be seen in Fig. 3. The new formula cannot perfectly reconstruct the real driven coupling but is still superior in comparison to the old methods. Note that the new formula shows only a minuscule jump at the position of the AC-dipole while still keeping a better agreement with the real value than the previous methods.

9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, Canada, Apr.-May 2018, pp. 208-211. doi:10.18429/ JACoW-IPAC2018-MOPMF047
[3] E. H. Maclean, F. S. Carlier, M. Giovannozzi, T. Persson, and R. Tomas, "Effect of Linear Coupling on Nonlinear Observables at the LHC", in Proc. 8th Int. Particle Accelerator Conf. (IPAC'17), Copenhagen, Denmark, May 2017, pp. 3151-3154. doi:10.18429/JACoW-IPAC2017-WEPIK092
[4] R. Tomás, M. Aiba, A. Franchi, and U. Iriso, "Review of Linear Optics Measurement and Correction for Charged Particle Accelerators", Phys. Rev. Accel. Beams, vol. 20, p. 054801, 2017. doi:10.1103/PhysRevAccelBeams. 20. 054801
[5] R. Bartolini and F. Schmidt, "Normal form via tracking or beam data", Part. Accel., vol. 59, pp. 93-106, 1998.
[6] R. Miyamoto, "Measurement of Coupling Resonance Driving Terms with the AC Dipole", BNL, Upton, NY, USA, Rep.

BNL-94350-2010-IR, Oct. 2020.
[7] F. S. Carlier, "A Nonlinear Future - Measurements and corrections of nonlinear beam dynamics using forced transverse oscillations", Ph.D. thesis, Univ. Amsterdam, 2020.
[8] A. Wegscheider, "Development of Optics Measurement Methods for Circular Accelerators", Ph.D. thesis, Universität Hamburg, 2020.
[9] S. Peggs and C. Tang, "Nonlinear diagnostics using an AC Dipole", BNL, Upton, NY, USA, Rep. RHIC/AP/159, 1998.
[10] E. J. Hoydalsvik and T. H. B. Persson, "Reaching the Sub Per Mil Level Coupling Corrections in the LHC", presented at the 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, paper THPAB001, this conference.

