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Abstract
Machine learning models of accelerator systems (“surro-

gate models”) are able to provide fast, accurate predictions
of accelerator physics phenomena. However, approaches
to date typically do not include measured input diagnostics,
such as the initial beam distributions, which are critical for
accurately representing the beam evolution through the sys-
tem. Surrogate models that can leverage both simulation
and measured data successfully are needed. We introduce an
approach based on encoder-decoder style convolutional neu-
ral networks that uses the drive laser distribution and scalar
settings as inputs for a photoinjector system model (here,
the Linac Coherent Light Source II, or LCLS-II, injector
frontend). The model is able to predict scalar beam parame-
ters and the transverse beam distribution downstream, taking
into account the impact of time-varying non-uniformities in
the initial transverse laser distribution. These approaches for
improving ML-based online modeling of injector systems
could be easily adapted to other accelerator facilities.

INTRODUCTION
Physics simulations of particle accelerators are essential

tools for predicting optimal settings for different running con-
figurations (e.g. changing the bunch charge, bunch length).
Injector systems are particularly difficult to model accurately
a priori because of nonlinear forces such as space charge
at low beam energies. These simulations can also be com-
putationally expensive, which can be prohibitive during the
design stage as well as for online use in accelerators. Thus,
there is a general need for fast and reliable models which can
be used for online prediction, offline experiment planning,
and design of new setups. Fast models would also enable
more thorough investigation of differences between physics
simulations and the real machine. There is also significant
effort [1–8] towards using model-based control methods
in real-time machine operation and tuning, with the goal
to achieve faster, higher-quality tuning. Machine learning
(ML) methods may help to automate tasks such as switching
between standard operating schemes, or correcting small
deviations that result in poor beam quality. Fast-executing,
accurate machine models can aid the development and de-
ployment of these control methods.

Machine learning (ML) based surrogate models are one
avenue toward developing fast, reliable, and realistic models
of accelerators. For injector systems, data generation and
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model training requires significant computational resources,
but once trained, ML models offer orders of magnitude
faster execution speed over classical simulation methods.
Amongst the many ML algorithms available, neural net-
work (NN) based surrogate models are being widely applied
for addressing the issue of execution speed and obtaining
fast, non-invasive predictions of beam parameters. Several
studies have verified that ML-based models can be used
to support fast optimization, particularly when trained us-
ing data that spans the operational range of the physical
inputs [2, 4, 9–13,20–25].

While surrogate models trained on simulation are fast
enough for use in online operation, the issue of how accurate
these models are with respect to the real accelerator system
also needs to be addressed. One way to address this issue
is to train surrogate models on measured data, but in many
cases there is not enough data to do so. Further, injector
surrogate models to date do not include the full transverse
laser distribution measurements as inputs, resulting in a
loss of important time-varying information for accurately
predicting the beam behavior.

Here, we introduce an ML-based approach to address
these issues by accounting for variation in the VCC image
and conducting domain transfer between the simulation and
measured data. We demonstrate that including the VCC
image as an input to the model improves the predictions.
To achieve this, we combined scalar setting inputs for the
injector with a Convolutional Neural Network (CNN) to
do the image processing. A similar approach was taken in
simulation in [9], and here we take the next step of including
measured VCC images as inputs.

THE LCLS-II PHOTOCATHODE
INJECTOR

The new Linac Coherent Light Source (LCLS) super-
conducting linac at the Stanford Linear Accelerator Center
(SLAC), or LCLS-II, is one such facility that could bene-
fit from having fast, accurate models for use in experiment
planning, online prediction of beam distributions, and model-
based control.

The injector, shown in Fig. 1, will be used for the LCLS-II
project. The expected operating parameters for the injector
are shown in Table 1. At the time of experimentation, the
injector was in early commissioning.

With such a high repetition rate, the cathode field gradient
is lower than low-repetition rate photocathode injectors [14].
Thus, the kinetic energy of the electrons as they are emitted
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and injected into the buncher is relatively low; up to 750 keV.
At this energy, the dynamics are space-charged dominated.
To study the dynamics in this regime and optimize the param-
eters for operation, particle-in-cell simulations are necessary.
As such, these calculations can take several minutes to com-
plete.

Figure 1: A schematic of the LCLS-II injector, showing each
component and its position along the beamline [14].

Table 1: Designed Operating Parameters for the LCLS-II
Injector

Parameter Value Unit

Charges 100 pC
Laser FWHM 20 ps
Laser Radius 1 mm
Field on Cathode 20 MV/m
Repetition Rate 1 MHz

SURROGATE MODEL DATA CREATION
AND ARCHITECTURE

For this study, all simulated data was generated using As-
tra [15], and particle generation was done using distgen [16].
The SLAC-developed Python wrapper LUME-Astra [17]
was used to create, set-up, and process simulated data. Mea-
surements of laser input distributions were done by the fol-
lowing apparatus: the laser beam is passed through an optical
splitter, such that approximately 5% of the beam intensity is
directed towards a camera. The distance between the splitter
and the camera is analogous to the distance between the
splitter and the cathode, i.e. the transverse size of the laser
at the camera location should be equal to the size at the
cathode. The intensity at the camera is recorded, providing
an image of how the laser intensity at the cathode appears.
The measurements were recorded over many days to capture
any variation.

For each laser profile, a particle bunch with 10 k particles
was generated and tracked through the injector lattice in
Astra to calculate various resulting beam outputs. It was
determined that the bulk parameters in the simulation can
be recovered with sufficient fidelity and speed using 10 k
particles.

Figure 2: Encoder-Decoder CNN architecture used for pre-
diction of beam transverse distributions and scalar beam
parameters, with the VCC laser distribution as a variable
input. To process the VCC images (binned into 50 × 50
pixels), the encoder consists of 3 convolutional layers with
10 filters each, alternating with max pooling layers for 2 ×
downsampling. The scalar input settings are concatenated
into the first of 4 fully-connected layers in between the en-
coder and decoder. The scalar outputs are obtained from the
last of these layers. Finally the decoder CNN consists of 3
convolutional layers alternating with 2 × upsampling layers,
resulting in an output transverse beam prediction image with
50 × 50 bins.

Architecture and Model Training
All neural network model development and training was

done using the TensorFlow and Keras libraries [18]. Each
model was trained by minimizing a mean squared error loss
function, using the Adam optimization algorithm [19].

The model took scalar settings for the solenoid value and
charge as inputs, along with the 2-dimensional histogram
representation of the laser intensity on the cathode. The laser
distributions were 50 × 50 bins. The size of the laser distri-
bution were given as the horizontal and vertical extents of
the histogram, relative to the center of the histogram.These
six scalar values and the 50 × 50 bin laser distribution are
considered inputs to the models. The binned images were
input into convolutional layers. Three convolutional layers
with 10 4 × 4 filters each are applied to the image inputs.
The resulting nodes are then fed to densely-connected layers.
The densely-connected part of the network consists of 6 hid-
den layers with 1024, 512, 256, 64, 32, 16. The convolution
procedure is then mirrored to deconvolve the neurons back
into the scalar output nodes, and the electron beam distri-
bution. This is shown in Fig. 2. The training was done by
using 1 GPU on Cori at NERSC , and took several hours to
complete.

RESULTS AND CONCLUSIONS
The results of the training on selected samples are shown

in Fig. 3. Similarly, to determine if the model can success-
fully interpolate between the laser distributions that were
seen during training, to similar distributions which have not
been seen, several unique laser distributions were withheld.
The predicted projections of the electron distributions are
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shown in Fig. 4. It is clear that the macroscopic shapes and
non-uniformity are captured by the surrogate model.

Figure 3: Examples of the neural network predictions and
Astra simulation results for the transverse beam distributions.
The corresponding VCC inputs used in each case are shown
at left. The agreement is good, even for cases with irregular
beam distributions. This demonstrates that the model can
interpolate between measured input laser distributions (as
seen on the VCC) and provide realistic predictions of the
expected transverse beam distribution from simulation. This
is important for using this model online in the accelerator,
as the initial beam distribution will vary with time.

X Profile (mm) Y Profile (mm)
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Figure 4: Predicted and simulated profiles for laser profiles
withheld from training.

These results suggest that this surrogate model is able to
interpolate between real laser distributions successfully, an
important step toward reliable online and offline use of the
model. More details can be found in [20].
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