
Teeport: BREAK THE WALL BETWEEN THE OPTIMIZATION
ALGORITHMS AND PROBLEMS∗

Z. Zhang† , X. Huang1, M. Song, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
1now at Argonne National Laboratory, Lemont, IL, USA

Abstract
Optimization algorithms/techniques such as genetic algo-

rithm (GA), particle swarm optimization (PSO) and Gaus-
sian process (GP) have been widely used in the accelerator
field to tackle complex design/online optimization problems.
However, connecting the algorithm with the optimization
problem can be difficult, sometimes even unrealistic, since
the algorithms and problems could be implemented in dif-
ferent languages, might require specific resources, or have
physical constraints. We introduce an optimization platform
named Teeport that is developed to address the above is-
sues. This real-time communication (RTC) based platform
is particularly designed to minimize the effort of integrating
the algorithms and problems. Once integrated, the users
are granted a rich feature set, such as monitoring, control-
ling, and benchmarking. Some real-life applications of the
platform are also discussed.

INTRODUCTION
As the accelerator properties such as beam emittance and

brightness are being pushed to their limit, the nonlinear ef-
fect is more and more important and must be taken into
consideration and handled properly to realize the designed
goals in operation. That’s why applying modern optimiza-
tion algorithms to tune the big machines online to optimize
the machine performance has became a trend over the last
few years in the accelerator field [1–7]. In a regular online
optimization scenario, the evaluation script that controls
the machine parameters and reads or calculates the objec-
tive to be optimized usually lives in the accelerator control
room (ACR), while the codes of optimization algorithms are
copied to the same computer in the ACR and adapted to the
evaluation script and perform the optimization task there.
There are a few problems posed in this simple and straight-
forward method. If the optimization algorithm was tested
in a simulation setup and then copied to the ACR, some re-
configuration may be needed, such as adapting the API to the
experimental evaluation script and setting up the algorithm
run-time environment. These seemingly trivial tasks could
be complicated, time-consuming, and error-prone. The work
may need to be done each time a new algorithm is used or
a new experimental problem is optimized. Furthermore, it
could be a daunting task to connect the algorithm and the
evaluation scripts if they are written in different languages.

∗ Work supported by DOE, Office of Science, Office of Basic Energy Sci-
ences, DE-AC02-76SF00515 and FWP 2018-SLAC-100469 Computing
Science, Office of Advanced Scientific Computing Research, FWP 2018-
SLAC-100469ASCR.

† zhezhang@slac.stanford.edu

Sometimes for security considerations an externally devel-
oped algorithm run-time environment is not allowed to be
deployed in the ACR.

In this stduy, we developed an online optimization plat-
form, Teeport, to addresses the aforementioned communi-
cation difficulties between the optimization algorithms and
application problems. It is task-based, extensible, embed-
dable, and can be used for optimization and real-time testing.
With Teeport, the algorithms and problems can be effort-
lessly integrated into a real-time messaging service, which
gives the ability for the two sides to talk to each other freely.
Teeport has been applied to solve real-life remote optimiza-
tion tasks in several national laboratories, including SLAC
and ANL.

PHILOSOPHY
We first analyze the following real-life online optimization

case as a way to introduce the philosophy behind Teeport.

Evaluator
Assume that we have a Matlab script that reads and writes

the PVs through EPICS. When the optimization algorithm
evaluates a solution (a point in the parameter space), the
script writes the PVs with the values given by the algorithm,
then reads and returns the PV value of the objective. There
could be some configurable parameters during the evaluation,
such as the waiting time between the PV writing and reading.
Therefore, the whole evaluation process can be abstracted
as a function:

Y = evaluate(X, configs). (1)

Here X and Y are 2D arrays, have shape of (𝑛, 𝑣) and (𝑛, 𝑜)
respectively, where 𝑛 denotes the number of the points to be
evaluated, 𝑣 the number of the variables, and 𝑜 the number of
the objectives. Any evaluation process, including simulation,
experiment, and parallel evaluation tasks that run on a cluster,
could be abstracted as the evaluate function as shown in
Eq. (1). In Teeport, we call the evaluation process that has
been implemented in the form shown in Eq. (1) an evaluator.

Optimizer
On the other hand, assume the optimization algorithm

is a Python script that imports several optimization-related
packages, that accepts an evaluate function and tries to
optimize it. The algorithm usually takes in parameters such
as the dimension of the problem to be optimized, the number
of the objectives, and parameters related to the termination
conditions. The optimization algorithm can be abstracted

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB305

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

WEPAB305

3387

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



like this:

[Xopt, Yopt, ⋯] = optimize(evaluate, configs), (2)

where [Xopt, Yopt, ⋯] are optional return arguments. Any
optimization process, including MOGA, GP optimizer, and
even a human being who decides which data points to evalu-
ate in the next step, could be abstracted as such a optimize
function as shown in Eq. (2). In Teeport, we call the opti-
mization process implemented in the form shown in Eq. (2)
an optimizer.

Adapter
Since the evaluator and the optimizer are implemented

in different languages, to enable them to talk to each other,
Teeport provides an adapter, or client, for each language, and
a messaging engine as a middleware between the evaluator
and the optimizer. With the corresponding adapter, the data
flowing in and out of the optimizer and the evaluator will be
normalized to a standard format and subsequently forwarded
by the messaging engine to complete the optimization loop.
The process is as illustrated in Fig. 1.

Figure 1: The architecture of Teeport. With the help of the
adapters provided by Teeport, the optimizer and the evaluator
can exchange data in a normalized format.

Monitor
Since the optimization data flow through the Teeport mes-

saging middleware, one can add the control and monitor
layers to the middleware, to make the online optimization
more controllable and visible. A visualization of the opti-
mization process based on the data flow is called a monitor,
and is provided by the Teeport GUI through a browser. Ex-
amples of monitors provided by Teeport are shown in Fig. 2.

FEATURES
Remote Online Optimization

Teeport completely decouples the evaluator and the op-
timizer, which makes performing an online experimental
optimization as simple as doing a local optimization. The
workflow to do an online optimization experiment is as fol-
lows:

Figure 2: Left: the history data of an online optimization
experiment that was performed through Teeport; Right: com-
parison among the performance of three optimization algo-
rithms against the SPEAR3 beam loss rate online optimiza-
tion problem.

1. Code the experimental evaluator, and integrate it to
Teeport with the run_evaluator API. Teeport will
generate an id and assign it to the evaluator.

2. On the local computer, use the Teeport adapter for the
language of the optimizer, and get a local evaluate
function through the use_evaluator API, with the id
of the last step.

3. Call the local optimize function on the local
evaluate function to perform the optimization.

After going through the above steps, the user will be auto-
matically granted a set of features through the Teeport GUI,
such as monitoring the optimization progress, pausing or re-
suming the optimization, terminating the optimization, and
so on. Figure 2 left plot shows a monitored single objective
optimization task.

Fast Switch Between Different Optimization Set-
tings

Since we can run multiple evaluators and optimizers on
Teeport, we can switch the optimization settings by: 1) Se-
lect the target evaluator and optimizer pair through the
Teeport GUI, or 2) Use the use_evaluator API and/or
the use_optimizer API to get local evaluator and/or opti-
mizer, then do the optimization normally.

The only actions that are needed to switch between the
different optimization settings with regard to the code are
switching the evaluator/optimizer id and/or update the config-
urations of the evaluator/optimizer accordingly. The process
is visualized in Fig. 3.

Optimization Performance Comparison
As data flow between the optimizer and the evaluator

through the Teeport platform, Teeport can archive the data
for future reference. With this data monitoring and archiving
capability, we can easily compare the performance of an
optimizer on a series of testing evaluators, or compare the
efficiency of different optimizers against the same to-be-
optimized evaluator, as shown in the right plot in Fig. 2.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB305

WEPAB305C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3388

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools



Figure 3: Fast switching between the simulation evaluator
and the experimental evaluator. The user can select the eval-
uator to be optimized upon by the corresponding id, get the
specific local evaluator, and then perform the optimization.

Through the comparison feature of Teeport, we could
determine how efficient each optimizer could be with respect
to the specific evaluator on the fly during the experiment,
and adjust our optimization strategy accordingly.

Optimization Algorithm Benchmark
Teeport has the ability to turn a local optimize function

into an online optimizer, and provides the user full control:
one can start, pause, resume, and terminate it. With this
capability, we can benchmark any optimization algorithm
effortlessly. One can pick an optimization configuration for
the optimizer-evaluator pair, and tells Teeport to repeat the
run for multiple times. Teeport will automatically perform
statistics on the results of the multiple runs and generate
some useful plots (objective mean and variation, Pareto
front distribution for multi-objective optimizations, etc) to
demonstrate the algorithm performance.

APPLICATIONS
SPEAR3 Beam Loss Rate Remote Optimization

The most important application of Teeport (which was
also the problem that lead to the creation of Teeport) is
remote online optimization. Usually to perform a beam-
based online optimization, such as the SPEAR3 beam loss
rate optimization, one needs to clone the algorithm from
the local computer to the ACR computer. With Teeport,
to perform a remote online optimization is effortless. For
example, below is what was done to optimize the SPEAR3
beam loss rate [8]:

1. Run the beam loss rate evaluation script as an evaluator
through the Teeport adapter for Matlab in the ACR.

2. Get the corresponding local evaluator through the
Teeport adapter for Matlab on the local laptop.

3. Call the optimize function with the local evaluate
function.

The remote optimization results and more details can be
found in the corresponding paper [8].

Enhance MG-GPO With GPy
In addition to be able to convert an evaluate function

to an online evaluator, Teeport is also capable to convert
an arbitrary function to an online processor, as long as the
function is pure [9] and the arguments and returns of the
function are serializable. That means we can use the API
provided by packages that are written in different languages
through Teeport.

When we were developing MG-GPO [10, 11], initially
we were not able to find a good Matlab Guassian process
package, which is important as GP modeling part is at the
core of the algorithm. In Python, there does exist an excellent
GP package called GPy [12]. The problem was, how to use
GPy to handle the GP modeling part, while keeping all other
logic in Matlab? This is solved with Teeport by running
GPy’s GP modeling function as a processor on Teeport,
applying the use_processor API to get a Matlab version
of the GP modeling function, and using it in our algorithm
evolution loop.

Unified Interface for the Optimization Platforms
Optimization algorithms have been widely used in the

accelerator field, and people are introducing more and more
algorithms to tackle the complex optimization problems.
While it is usually good to have more options to address a
hard problem, it could become problematic when the num-
ber of the optimization platforms are overwhelming. There
are currently more than 500 optimization platforms, each
of them is equipped with a collection of optimization algo-
rithms/test problems. Since the platforms were developed by
different people in different fields, and usually targeted dif-
ferent challenges, the usages are quite diverse. This diversity
could bring confusion and frustration to the users, especially
when the user tries to use the algorithms and test problems
from multiple platforms at the same time. Teeport addresses
this problem by providing a minimal set of integration APIs
to effortlessly integrate the algorithms and test problems.
It enables the users to use any of them through a unified
API (use_optimizer and use_evaluator), therefore al-
leviates the problem.

We have already integrated a large number of optimization
algorithms and test problem from various platforms, such
as PyGMO [13], pymoo [14], PlatEMO [15] and Ocelot
Optimizer [16], to Teeport.

CONCLUSION
We developed a RTC based online optimization platform,

Teeport, to break the communication wall between the opti-
mization algorithms and the application problems that live
in different environments. We applied Teeport to perform
and control remote online optimizations, monitor and bench-
mark the performance of the optimization algorithms, and
help developing and enhancing algorithms. Teeport has been
tested and deployed at SLAC and ANL. More information
about Teeport can be found at [17].

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB305

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools

WEPAB305

3389

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



REFERENCES
[1] X. Huang, J. Corbett, J. Safranek, and J. Wu, “An algorithm

for online optimization of accelerators”, Nuclear Instruments
and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, vol. 726,
pp. 77–83, Oct. 2013.
doi:10.1016/j.nima.2013.05.046

[2] X. Pang and L. Rybarcyk, “Multi-objective particle swarm
and genetic algorithm for the optimization of the lansce linac
operation”, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment, vol. 741, pp. 124–129, Mar. 2014.
doi:10.1016/j.nima.2013.12.042

[3] X. Huang, “Development and Application of On-
line Optimization Algorithms”, in Proc. North
American Particle Accelerator Conf. (NAPAC’16),
Chicago, IL, USA, Oct. 2016, pp. 1287-1291.
doi:10.18429/JACoW-NAPAC2016-FRA2IO01

[4] W. F. Bergan, I. V. Bazarov, C. J. Duncan, D. B. Liarte, D.
L. Rubin, and J. P. Sethna, “Online storage ring optimization
using dimension-reduction and genetic algorithms”, Physical
Review Accelerators and Beams, vol. 22, no. 5, p. 054601,
May 2019.
doi:10.1103/physrevaccelbeams.22.054601

[5] K. Tian, J. Safranek, and Y. Yan, “Machine based optimiza-
tion using genetic algorithms in a storage ring”, Physical
Review Special Topics - Accelerators and Beams, vol. 17, no.
2, p. 020703, Feb. 2014.
doi:10.1103/physrevstab.17.020703

[6] J. Duris et al., “Bayesian optimization of a free-electron
laser”, Physical Review Letters, vol. 124, no. 12, p. 124801,
Mar. 2020. doi:10.1103/PhysRevLett.124.124801

[7] D. K. Olsson, “Online Optimisation of the MAX IV 3 GeV
Ring Dynamic Aperture”, in Proc. 9th Int. Particle Accelera-
tor Conf. (IPAC’18), Vancouver, Canada, Apr.-May 2018, pp.
2281-2283. doi:10.18429/JACoW-IPAC2018-WEPAL047

[8] Z. Zhang, M. Song, and X. Huang, “Online accelerator op-
timization with a machine learning-based stochastic algo-
rithm”, Machine Learning: Science and Technology, vol. 2,
no. 1, p. 015014, Dec. 2020.
doi:10.1088/2632-2153/abc81e

[9] S. P. Jones, Haskell 98 language and libraries: the revised
report, Cambrigde, UK: Cambridge University Press, 2003.

[10] X. Huang, M. Song, and Z. Zhang, “Multi-objective multigen-
eration gaussian process optimizer for design optimization”,
2020. arXiv:1907.00250

[11] X. Huang, M. Song, and Z. Zhang, “Multi-Objective Multi-
Generation Gaussian Process Optimizer”, presented at the
12th Int. Particle Accelerator Conf. (IPAC’21), Campinas,
Brazil, May 2021, paper WEPAB304, this conference.

[12] GPy: A gaussian process framework in python,
http://github.com/SheffieldML/GPy

[13] F. Biscani and D. Izzo, “A parallel global multiobjective
framework for optimization: Pagmo”, Journal of Open
Source Software, vol. 5, no. 53, p. 2338, 2020.
doi:10.21105/joss.02338

[14] J. Blank and K. Deb, “Pymoo: Multi-objective optimization
in python”, IEEE Access, vol. 8, pp. 89497–89509, Apr. 2020.
doi:10.1109/access.2020.2990567

[15] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A
MATLAB Platform for Evolutionary Multi-Objective Op-
timization [Educational Forum]”, IEEE Computational In-
telligence Magazine, vol. 12, no. 4, pp. 73–87, Nov. 2017.
doi:10.1109/mci.2017.2742868

[16] S. I. Tomin et al., “Progress in Automatic Software-
based Optimization of Accelerator Performance”, in
Proc. 7th Int. Particle Accelerator Conf. (IPAC’16), Bu-
san, Korea, May 2016, pp. 3064-3066. doi:10.18429/
JACoW-IPAC2016-WEPOY036

[17] Teeport, https://teeport.ml/intro

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB305

WEPAB305C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3390

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T33 Online Modeling and Software Tools


