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Abstract
By accounting for the transverse impedance’ quadrupolar

component according to the work of R. Lindberg [1], no
TMCI-instability can be observed in case of a pure hori-
zontal resistive wall impedance of flat vacuum chambers.
In order to study this effect more closely, TMCI-theory is
reviewed and Lindberg’s work is further developed by in-
cluding the resonator model as impedance type. The theory
is applied to the ALBA-impedance model for the calcula-
tion of horizontal TMCI-detuning and threshold. Moreover,
a couple of example cases are presented including verti-
cal TMCI-detuning and threshold. Results on both planes
are compared to simpler descriptions which account for the
quadrupolar impedance effect only by tune shift.

INTRODUCTION
The transverse motion of particles in a single bunch can

be described by the (linearized) Vlasov equation [2–6]. The
effect of dipolar impedance on the transverse motion of
bunch particles was described by [7] by decomposition into
azimuthal and radial modes. Around 2000 it was found
that for flat vacuum chambers quadrupolar impedance has
a sensible effect on the transverse motion [8–10]. Its ef-
fect was typically included in the mode detuning by a tune
shift. However, R. Lindberg showed [1] that its effect has
to be fully accounted for in the dynamics of the bunch mo-
tion. Reference [11] already shows that the latter description
agrees better with HEADTAIL simulations [12] for not too
high frequencies in a two azimuthal mode system than the
description that only uses the tune shift caused by effec-
tive quadrupolar impedance. In this work Lindberg’s theory
will be applied on a larger number of modes and include
quadrupolar broadband impedance in the theory which was
not yet done in [1]. For this purpose a program (LINDE)
was written which is able to treat 10 × 10 azimuthal × radial
modes under the influence of dipolar and quadrupolar re-
sistive wall (RW) and broadband (BBR) impedance whose
frequency dependence we recall briefly:

𝑍𝛽
𝑅𝑊(𝜔) = (𝑠𝑔𝑛(𝜔) − 𝑖)𝑍𝑅𝑊

√|𝜔|
, 𝑍𝛽

𝐵𝐵𝑅 = (𝛽𝑅)⟂
𝜔
𝜔𝑟

+ 𝑖𝑄 (1 − 𝜔2
𝑟

𝜔2 )
,

where 𝑍𝑅𝑊 is the 𝛽-function weighted strength of the RW
and (𝛽𝑅)⟂ is the 𝛽-weighted shunt impedance, 𝑄 the quality
factor and 𝜔𝑟 the resonator frequency. Parameters with
𝛽-superscript are supposed to be 𝛽-function weighted in
the following. The treatment of RW-impedance of vacuum
elements – important for the ALBA impedance model –
that don’t follow the infinitely thick RW-model is included.
Only Gaussian bunch profiles with length 𝜎𝜏 = 15.4 ps are
considered. Zero chromaticity is assumed.
∗ tguenzel@cells.es

LINDBERGS’S MODE
EVOLUTION THEORY

In [1] the Vlasov equation is linearized with the Planck-
Fokker terms included. In the following it is assumed that
the TMCI is strong enough for the disregard of the Planck-
Fokker terms. This leads to the following equation1:

Δ𝜔𝑚𝑎𝑚
𝑝 + ∑

𝑛,𝑞
(𝐷 + 𝑄)𝑚,𝑛

𝑝,𝑞 𝑎𝑛
𝑞 = 0,

with Δ𝜔𝑚 = ΔΩ − 𝑚𝜔𝑠 with 𝜔𝑠 as synchrotron ang.
frequency, with dipolar and quadrupolar matrix elements
with 𝐶𝑚,𝑛

𝑝,𝑞 = √(𝑝 + |𝑚|)!(𝑞 + |𝑛|)!, 𝜖𝑚 = (−1)𝑚(1−𝛿𝑚
|𝑚|),

Λ ∶= 𝐼
4𝜋(𝐸/𝑒) as intensity parameter (𝐼 bunch current, 𝐸

particle energy):

𝐷𝑚,𝑛
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with 𝑍𝛽
𝐷(𝜔) as dipolar impedance and:

𝑄𝑚,𝑛
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with 𝑍𝛽
𝑄(𝜔) as quadrupolar impedance and the following

abreviation:

𝐼𝑚,𝑛
𝑝,𝑞 (𝜔) =

∞
∫
0

𝑑𝑟𝑒−𝑟𝑟
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𝑞 (𝑟),

with 𝐿𝑛
𝑝(𝑥) as general Laguerre-polynomials. Interesting

special cases can be found in solving the azimuthal 2-mode
system under the effect of RW- or BBR-impedance where
the mode frequencies follow:

0=[ ΔΩ + 𝐼𝑏(1 + 𝜌) 𝐼𝛼𝑏(1 − 𝜌)
−𝐼𝛼𝑏(1 + 𝜌) ΔΩ + 𝜔𝑠 + 𝜌𝐼𝑏 + 𝐼 𝛽

2 𝑏(1 − 𝜌) ][ 𝑎0
0

𝑎−1
0

],

whose eigenvalues representing the mode frequencies yield:

ΔΩ = −
𝐼𝑏(1 + 2𝜌) + 𝛽

2 𝐼𝑏(1 − 𝜌) + 𝜔𝑠
2 ±

1
2

√[𝐼𝑏 − 𝛽
2 𝐼𝑏(1 − 𝜌) − 𝜔𝑠]2 − 4𝛼2𝐼2𝑏2(1 − 𝜌2),

(1)

where 𝑏 = 𝜅𝛽
⟂ /(2(𝐸/𝑒)) – the numerator representing the

trans. kick factor, 𝜌 =
𝑍𝛽

𝑄(𝜔)

𝑍𝛽
𝐷(𝜔)

= 𝑐𝑜𝑛𝑠𝑡, 𝛼 and 𝛽 (Fig. 1)
parameters characterizing the used impedance model (RW
or BBR) in the context of the 2-mode system. In the follow-
ing 3 sections we simplify a bit by assuming that dipolar
and quadrupolar impedance are spectrally equal with either
𝜌 = 0, 0.5 (vertical) or −1 (horizontal).
1 Actually we stick to the mode expansion of [13].
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Figure 1: 𝛼 and 𝛽 for different quality factors 𝑄 as a func-
tion of bunch length weighted resonance frequency of the
broadband impedance.

COMPARISON WITH OTHER
SIMULATION PROGRAMS

Since LINDE-theory is MOSES-theory [7] for pure dipo-
lar impedance it agrees with the azimuthal and radial mode
decomposition of MOSES in that case (Fig. 2). Good agree-
ment is also achieved with HEADTAIL (Fig. 3).
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Figure 2: Mode detuning LINDE compared to MOSES for
1BBR: 𝑓𝑟 = 3 GHz, (𝛽𝑅)⟂ = 100 MΩ, 𝑄 = 2.3.

Figure 3: Mode detuning LINDE compared to HEADTAIL
for one horizontal (dipole + quadrupole) BBR-resonator .

VERTICAL PLANE
Considering only 2 azimuthal modes the TMCI-threshold

is found by putting Eq. (1) radicand to zero:

𝐼𝑡ℎ𝑟𝑒𝑠 = 𝜔𝑠

𝑏(1 − 𝛽
2 (1 − 𝜌) + 2𝛼√1 − 𝜌2)

. (2)

For a pure dipolar impedance that is supplemented if applica-
ble by a tune shift of quadrupolar origin the TMCI-threshold

yields (𝜌 = 0):

𝐼𝑡ℎ𝑟𝑒𝑠 = 𝜔𝑠

𝑏(1 − 𝛽
2 + 2𝛼)

,

whereas in Lindberg’s theory with an assumed ratio of
quadrupolar to dipolar impedance of 𝜌 = 0.5 (applying
RW-impedance theory of flat chambers [8] also on BBR-
impedance) it yields:

𝐼𝑡ℎ𝑟𝑒𝑠 = 𝜔𝑠

𝑏(1 − 𝛽
4 + √3𝛼)

.

The difference between 𝛼 and 𝛽 is the largest at 𝜔𝑟𝜎𝜏 = 0
(Fig. 1) leading to a threshold increase with respect to the
pure dipolar one (Fig. 4) whereas the largest reduction of
the threshold (-18%) can be reached at 𝜔𝑟𝜎𝜏 = 2.3 (Fig. 5).
This might reduce the gap found at many synchrotrons be-
tween the measured TMCI-thesholds and notoriously too
high predicted ones [14]. However, it is based on the ide-
alization of a quadrupolar BBR-impedance that has the
same spectral distribution as the dipolar one. Moreover,
for quadrupolar RW-impedance, a large contributor to the
total impedance, actually 𝛽 = 0.25 and 𝛼 = 0.239 the
TMCI-threshold slightly increases by Δ𝐼 = 8.4 ⋅ 10−4𝜔𝑠/𝑏.
But in case of quadrupolar BBR-impedance spectrally dif-
ferent from the dipolar impedance further possibilities for a
reduction of the TMCI-threshold open up which can be only
discussed in a larger publication. Finally the Eq. (2) for the
vertical threshold assumes only one radial mode whereas the
true threshold actually yields only considering many radial
modes best to be found in an iterative procedure.
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Figure 4: The TMCI-threshold for a dipolar+quadrupolar
BBR-impedance is larger than for a purely dipolar impedance
for a very small 𝜔𝑟𝜎𝜏.
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Figure 5: The TMCI-threshold dipolar+quadrupolar BBR-
impedance is smaller than for a purely dipolar impedance.
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HORIZONTAL PLANE
Due to 𝜌 = −1 (applying RW-impedance theory of flat

chambers [8] also on BBR-impedance) in the 2 azimuthal
mode case the coupling term disappears making the mode-
coupling impossible. Both modes only cross each other
at

𝐼𝑚𝑜𝑑𝑒𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 = 𝜔𝑠
𝑏(1 − 𝛽) , (3)

without any coupling. This astonishing result was checked
in [11] for RW- and BBR-impedance (Fig. 3). It is also re-
markable that the positive slope of mode 𝑚 = −1 is weaker
than in case of pure dipolar impedance. For resonator fre-
quencies > 5 GHz the agreement between Lindberg’s theory
and HEADTAIL-simulations is less good in case of the 2 az-
imuthal mode model. By taking more azimuthal and radial
modes into account the agreement again is good (Fig. 6).

Figure 6: Large number of azimuthal and radial modes (red)
compared to fewer modes (blue) make HEADTAIL and
LINDE agree better for a BBR impedance (𝛽𝑅)⟂ = 100 MΩ
and 𝑄 = 2.3 of higher frequency: 𝑓𝑟𝑒𝑠 = 10 GHz.

APPLICATION ON THE ALBA
IMPEDANCE MODEL

For the study of more realistic HT-mode evolution
(we don’t aim here at an impedance budget comparison)
the newest transverse impedance model of the ALBA-
synchrotron with a relaxed 𝜎𝜏 = 22 ps is input to LINDE. It
consists of vertical and horizontal dipolar and quadrupolar
BBR-impedance spectra plus an important RW-impedance
part consisting of a thick wall RW-model plus the a cou-
ple of special chambers’ RW-impedance. Element-wise
GdfidL-simulations [15] of the storage ring vacuum cham-
ber geometry provide wakefields which are after detuning-
wake separation are Fourier-transformed into dipolar and
quadrupolar impedance that are separately accumulated. A
series of 3-6 broadband models are fitted to the obtained
impedance spectra. It was checked that the impedance spec-
tra and the obtained fits yield about the same kick factor to
assure the same detuning slopes. Spectrally different dipolar
and quadrupolar BBR-impedance now are part of the model,
so 𝜌 looses its meaning. The BBR-models obtained by the
fits serve as input into LINDE. In the vertical plane a reduc-
tion of the TMCI-threshold is achieved with the inclusion of
many radial modes (Fig. 7). In the horizontal plane the ratio
of effective quadrupolar and dipolar impedance only reaches

-0.7 (comparable with the 𝜌-value). Therefore modes 𝑚 = 0
and 𝑚 = −1 still couple. However, compared to the thresh-
old obtained by dipolar impedance (plus a superimposed
tune shift generated by quadrupolar impedance according to
the old picture) the threshold is larger (Fig. 8).
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Figure 7: Vertical ALBA impedance model’s mode evolu-
tion: one radial mode vs. six radial modes.
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Figure 8: Horizontal ALBA impedance model’s mode evo-
lution compared to the pure dipolar impedance model + tune
shift from the quadrupolar impedance.

CONCLUSIONS
Special BBR-settings and the consideration of many ra-

dial modes are opportunities the code LINDE offers for the
reduction of the vertical TMCI-threshold thereby contribut-
ing a bit to close down the gap between the measured and
the predicted one – the latter is notoriously higher than the
measured one [14]. On the horizontal plane under the ef-
fect of a realistic impedance model the modes still couple
albeit at higher current. At ALBA a check of horizontal
TMCI-threshold is not possible because its value is beyond
critical heatload risks. By the way the same effect also leads
to an increase of the computed horizontal TMCI-threshold
at the old (status 2005) ESRF ring [16] which rectifies the
at that time found disparity between vertical and horizontal
TMCI-threshold. Upgrades of LINDE allowing for variable
bunchlength and spectra are planned. In particular an itera-
tive procedure with an increasing number of radial modes is
planned in order to find the detuning slopes. A larger paper
discussing the whole topic in more details is foreseen.
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