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Abstract
To efficiently inject a high-current 𝐻+

2 beam into the
60 MeV driver cyclotron for the proposed IsoDAR project
in neutrino physics, a novel direct-injection scheme is
planned to be implemented using a compact radio-frequency
quadrupole (RFQ) as a pre-buncher, being partially inserted
into the cyclotron yoke. To optimize the RFQ beam dynam-
ics design, machine learning approaches were investigated
for creating a surrogate model of the RFQ. The required
sample datasets are generated by standard beam dynamics
simulation tools like PARMTEQM and RFQGen or more
sophisticated PIC simulations. By reducing the computa-
tional complexity of multi-objective optimization problems,
surrogate models allow to perform sensitivity studies and
an optimization of the crucial RFQ beam output parameters
like transmission and emittances. The time to solution might
be reduced by up to several orders of magnitude. Here we
discuss different methods of surrogate model creation (poly-
nomial chaos expansion and neural networks) and identify
present limitations of surrogate model accuracy.

INTRODUCTION
In modern ion accelerators radio-frequency quadrupoles

(RFQs) typically are the first RF accelerator structure behind
the low energy beam transport (LEBT) section and combine
the following functions:

• The transversally defocusing effect of the space charge
force has a 1/𝛾2-dependency and hence at low beam ve-
locities efficient (and velocity-independent) transversal
focusing is required. As shown in Fig. 1, the alternating
electric quadrupole field leads to a focusing force along
one of the transverse axes while defocusing occurs in
the perpendicular direction, effectively constituting an
alternating gradient focusing channel. The transver-
sal focusing strength in an RFQ cell 𝑛 is commonly
characterized by the parameter 𝐵𝑛 [1].

• By adding a sinusoidal modulation to the electrode
shape, a longitudinal field component is generated
which can be used to adiabatically bunch the DC input
beam. This is a highly delicate procedure due to the
high sensitivity of space-charge dominated beams to
perturbations of the beam density. The consecutive
modulation cells form a 𝜋-mode accelerator structure
with a cell length of ℓ𝑐 = 𝛽𝑐𝜆RF/2. The extent of elec-
trode modulation (corresponding to the magnitude of
the longitudinal field component) of a cell 𝑛 is parame-
terized by the modulation factor 𝑚𝑛.
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• The synchronous phase 𝜙s,𝑛, which is adjusted by the
cell lengths, determines the ratio of longitudinal bunch-
ing to acceleration and the overall phase space stability.
By increasing 𝜙s,𝑛 along the RFQ, beam acceleration
is gradually introduced.

Figure 1: Transversal electric quadrupole field in an RFQ
(left) with focusing/defocusing plane (green/red) and elec-
trode cell modulation (right), resulting in a longitudinal field
component.

Accordingly, the beam dynamics properties of an RFQ
with a number of 𝑛 cells are fully described by the pa-
rameter sets B = (𝐵1, … , 𝐵𝑛), m = (𝑚1, … , 𝑚𝑛) and
𝝓s = (𝜙s,1, … , 𝜙s,𝑛).

Since finding an optimized beam dynamics design usually
requires a very large number of simulation iterations, the
design procedure of RFQs can be time consuming, especially
when completely new solutions to meet the required beam
output quality need to be explored. This is sometimes even
the case for comparatively fast executing beam dynamics
codes like PARMTEQM or RFQGen, but is definitely a
problem when time consuming PIC simulations are used as
the basis for optimization.

Most recently, uncertainty quantification (UQ) approaches
have been developed to construct surrogate models that repli-
cate the beam dynamics behavior in accelerators [2], using
techniques based on polynomial chaos expansion (PCE) and
neural networks (NN). By significantly reducing computa-
tional complexity compared to the corresponding physics
simulation, surrogate models execute orders of magnitude
faster. Optimizations based on surrogate models have al-
ready been demonstrated for different types of accelerator
systems, such as ion injectors (linac), cyclotrons and electron
accelerators [3, 4].

To optimize the beam dynamics design of the IsoDAR-
RFQ, which is intended to be used for pre-bunching of a
5 mA 𝐻+

2 beam for direct axial injection into a 60 MeV cy-
clotron [5], the developed machine learning techniques were
applied to create a surrogate model of the RFQ and the appli-
cability to different optimization problems was investigated
(optimization of input beam twiss parameters, optimization
of the entrance gap-field phase, full RFQ optimization).
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Figure 2: Parametrization functions 𝐵(𝑧), 𝜙(𝑧) and 𝑚(𝑧) of the RFQ cell properties.
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Figure 3: Machine learning optimization scheme for RFQ beam dynamics.

MACHINE LEARNING APPROACH TO
RFQ BEAM DYNAMICS OPTIMIZATION

The optimization was based on beam dynamics simula-
tions in PARMTEQM, which reads in the RFQ properties as
an input table defining the functions 𝐵(𝑧), 𝜙s(𝑧) and 𝑚(𝑧).
For the case of the full RFQ optimization the RFQ was
parameterized according to Fig. 2 by a total of 14 design
variables (DVARs). The length of the RFQ is determined by
DVAR14, being the cutoff energy after which PARMTEQM
ends the electrode (always with a full RFQ cell).

As schematically depicted in Fig. 3, beam dynamics simu-
lations were performed for a number of random RFQ design
variations (randomized DVAR values), and the DVARs and
corresponding simulated values of the objectives (transmis-
sion, RFQ length, output energy and emittances) for each
run were stored in the sample dataset which was used to train
either a neural network or use polynomial chaos expansion
to create a surrogate model. Based on the surrogate model,
an optimization was performed, the result of which (surro-
gate model output of the best found set of DVARs) was then
compared to the result of the corresponding PARMTEQM
simulation.

RESULTS – SURROGATE MODEL
AND OPTIMIZATION ACCURACY

Different optimization problems have been studied:
• full RFQ optimization (14 DVARs)
• optimization of only the input beam twiss parameters

(2 DVARs), the RFQ itself was not varied
• optimization of the entrance gap-field phase and the

input beam twiss parameters (3 DVARs).

It was found that highly accurate (<1% mean average error,
MAE) surrogate models can be obtained for the optimization
of only the input beam twiss parameters (2 DVARs), as well
as for a simplistic test case of a FODO lattice. For these
simple cases, an optimization based on the surrogate model
could be performed, with small deviation of the result to
the beam dynamics simulation. In general, the use of neural
networks leads to more accurate surrogate models compared
to polynomial chaos expansion.

As shown in Fig. 4 and summarized in Fig. 5, the surro-
gate model for the full RFQ optimization suffers from much
higher errors, especially regarding the emittances (>10%).
This leads to unacceptable deviations of the SM optimiza-
tion result compared to the PARMTEQM simulation of up
to 40 %. In principle, this issue can be observed consistently
in all optimizations where design variables are varied that
directly affect the longitudinal phase space, such as the opti-
mization of the phase of the longitudinal entrance gap-field
which effectively pre-bunches the beam prior to entering
the radial matching section of the RFQ. In none of the prob-
lematic cases did the error values improve significantly by
switching off space charge (beam dynamics simulation with
zero-current).

As depicted in Fig. 6, the surrogate model lends itself to
performing sensitivity analyses investigating the impact of
DVAR variation on the optimization objectives. Eventually,
this allows evaluation of the cell properties parametrization
model and to reduce the number of DVARs by omitting vari-
able variations with little effect on the crucial optimization
objectives.
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Figure 4: Surrogate model output (y-axis) vs. sample result value (x-axis) for the training and prediction datasets.

MAE‘s [%]

Input beam 
optimization

(2 DVARs)

Full RFQ 
optimization
(14 DVARs)

PCE NN PCE NN

Transmission 0.17 0.15 3.45 2.37

𝜀𝜀longitudinal 0.72 0.57 10.51 8.16

𝜀𝜀𝑥𝑥 1.85 0.55 13.19 12.78

𝜀𝜀𝑦𝑦 0.74 0.71 13.29 12.45

Output energy
no variation

1.82 1.93

RFQ length 1.16 2.03

Figure 5: Comparison between mean average errors (MAE’s)
for surrogate models based on polynomial chaos expansion
(PCE) and neural networks (NN) for different optimization
cases and objectives.

Figure 6: Sensitivity plot for the full RFQ optimization with
14 design variables (DVARs).

CONCLUSION & OUTLOOK
While some use cases (e.g. FODO lattice or RFQ input

beam twiss parameters optimization) can already be modeled
with high accuracy, the origin of the larger errrors regarding
design parameter variations that affect the longitudinal phase
space is currently being investigated. To allow an accurate
surrogate model based optimization of the full RFQ, possible
solutions such as a modification of the used neural network
are being evaluated.

REFERENCES
[1] K. R. Crandall, R. H. Stokes, and T. P. Wangler, “RF

Quadrupole Beam Dynamics Design Studies”, in Proc.
LINAC’79, Montauk, NY, USA, Sep. 1979, paper S4-1, pp.
205-216.

[2] A. Adelmann, “On Nonintrusive Uncertainty Quantification
and Surrogate Model Construction in Particle Accelerator Mod-
eling”, SIAM/ASA J. Uncertainty Quantif., vol. 7, no. 2, pp.
383–416, 2019. doi:10.1137/16M1061928

[3] A. Edelen et al., “Machine learning for orders of magnitude
speedup in multiobjective optimization of particle accelerator
systems”, Phys. Rev. Accel. Beams, vol. 23, p. 044601, Apr.
2020. doi:10.1103/PhysRevAccelBeams.23.044601

[4] N. Neveu et al., “Parallel general purpose multiobjective opti-
mization framework with application to electron beam dynam-
ics”, Phys. Rev. Accel. Beams, vol. 22, p. 054602, May 2019.
doi:10.1103/PhysRevAccelBeams.22.054602

[5] D. Winklehner, R. Hamm, J. R. Alonso, and J. M. Conrad, “An
RFQ direct injection scheme for the IsoDAR high intensity 𝐻+

2
cyclotron”, 2015. arXiv:1507.07258v1

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB203

WEPAB203C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3102

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques


