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Abstract 
By incorporating the longitudinal electric field reduction 

due to finite transverse beam size into the Poisson equation 
and solving the Hill's equation with time-dependent plasma 
frequency, we investigate how the amplification of a 
Plasma-Cascade Amplifier (PCA) depends on the spatial 
frequency of the density modulation.  

INTRODUCTION 
E A new type of amplifier, plasma cascade amplifier 

(PCA) has been proposed for a coherent electron cooling 
(CeC) system [1-3]. Previously, the 1D model for PCA as-
sumes that the transverse distribution of the density pertur-
bation in the electrons is uniform and consequently, the 
plasma frequency does not depend on the wavelength of 
the perturbation [1]. This assumption is valid if the longi-
tudinal wavelength of the initial perturbation in the beam 
frame is much shorter than the transverse width of pertur-
bation.  

In this work, we explore the PCI gain at long wavelength 
by assuming the perturbation in electrons’ density has non-
uniform transverse profile. Specifically, we solve the 3D 
Poisson equation for given charge distribution (longitudi-
nal sinusoidal, transversely Gaussian or Beer-can), average 
the electric field over the transverse plane and then apply 
it to 1-D Vlasov equation. Similar to the previous calcula-
tion in [1], the Vlasov equation can be reduced to a Hill’s 
equation but the plasma frequency now depends on the lon-
gitudinal wavelength of the density perturbation in the 
electrons. By numerically solving the Hill’s equation, we 
obtain the gain of a PCA as a function of spatial frequency, 𝑘 . 

EQUATION OF MOTION 
For 1-D analysis, we treat each electron as a charge disc 

with certain charge distribution and consequently the evo-
lution of the electrons' density perturbation in the beam 
frame are determined by the linearized 1-D Vlasov equa-
tion,  𝑓 𝑧, 𝑣 , 𝑡 + 𝑣 𝑓 𝑧, 𝑣 , 𝑡 + 𝑣 𝑓 𝑧, 𝑣 , 𝑡 = 0, 

(1) 
where 𝑣  is the longitudinal velocity of the electrons, 𝑧 

is the longitudinal position along the bunch, 𝑣 = − , ,                              (2) 

is the longitudinal acceleration due to the longitudinal elec-
tric field 𝐸 𝑧, 𝑡  , 𝑒 is the absolute value of the charge of 
an electron and 𝑓 𝑧, 𝑣 , 𝑡  is the density perturbation of the 
electrons in the longitudinal phase space and 𝑓 𝑣  is the 
unperturbed distribution of electrons. The longitudinal 
electric field due to density perturbation is determined by 
the Poisson equation 

  𝛻 ⋅ 𝐸 = − , , , ,  (3) 
where 𝑛 𝑟, 𝑧,𝜃, 𝑡  is the local spatial density perturbation 
of the electrons. For the next step, we will try to solve 
Eq. (3) and since there is no operation in time 𝑡 for Poisson 
equation, we will omit 𝑡 from the variables in the bracket 
for now and will put it back when we solve the coupled-
Poisson-Vlasov equation system. If we assume that the 
spatial distribution of the electron beam has cylindrical 
symmetry and define  

  𝑛 𝑟, 𝑧 = 𝜌 𝑧 𝑓 𝑟 ,                     (4) 
Eq. (3) becomes 𝑟 𝜑 𝑟, 𝑧 + 𝜑 𝑟, 𝑧 =− 𝜌 𝑧 𝑓 𝑟 ,  (5) 

where 𝜑 𝑟, 𝑧  is the electric potential, 𝑓 𝑟  is the trans-
verse surface density of electrons in unit of 𝑚  and 𝜌 𝑧  
is perturbation of electron line density in unit of 𝑚 . Mul-
tiplying both sides of Eq. (5) by 𝑒  and integrating over 𝑧 yields 𝜙 + 𝜙 − 𝑘 𝜙 = 𝑓 𝑟 ,  (6) 

with   𝜙 𝑘, 𝑟 = 𝑒 𝜑 𝑟, 𝑧 𝑑𝑘∞
∞ ,  (7) 𝑓 𝑟 = − 𝑓 𝑟 𝑒 𝜌 𝑧 𝑑𝑧∞

∞ = − 𝑓 𝑟 𝜌 𝑘 , 
  (8) 

 and   𝜌 𝑘 = 𝑒 𝜌 𝑧 𝑑𝑧∞
∞ .  (9) 

The solution of Eq. (6) can be written as 𝜙 𝑟 = 𝑐 𝐼 𝑘𝑟 + 𝑐 𝐾 𝑘𝑟  +
′ ′

⋅ 𝑓 𝜉 𝑑𝜉,  (10) 

where 𝐼 𝑥  and 𝐾 𝑥  are the modified Bessel functions. 
By applying the following boundary conditions, 𝜙 ∞ = 0 and 𝑙𝑖𝑚→ 𝜙 𝑟 ≠ ∞, the coefficient, 𝑐  and 𝑐  
can be determined as 

   𝑐 = 0,   (11) 
and 

   𝑐 = − 𝜉𝐼 𝑘𝜉 ⋅∞ 𝑓 𝜉 𝑑𝜉.  (12) 

Inserting Eq. (11) and Eq. (12) into Eq. 10 leads to 
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  𝜙 𝑟 = 𝐼 𝑘𝑟 𝜉𝐾 𝑘𝜉 ⋅∞ 𝑓 𝜉 𝑑𝜉  − 𝐾 𝑘𝑟 𝜉𝐼 𝑘𝜉 ⋅ 𝑓 𝜉 𝑑𝜉.  (13) 
The longitudinal electric field is obtained from 𝐸 = − = − 𝑘𝜙 𝑘, 𝑟 𝑒 𝑑𝑘∞

∞ = 𝐸 𝑟, 𝑘 𝑒 𝑑𝑘∞
∞ , 

with 𝐸 𝑟, 𝑘 = −𝑖𝑘𝜙 𝑟 .    (14) 
If we assume that the transverse distribution of the elec-

tron density perturbation is Gaussian, i.e. 𝑓 𝑟 = − 𝜌 𝑘 𝑒𝑥𝑝 − ,  (15) 
the longitudinal electric field averaged over the transverse 
plane reads 𝐸 , 𝑧 = 𝐸 , 𝑘 𝑒 𝑑𝑘∞

∞ ,  (16) 
with 𝐸 , = 2𝜋 𝑟𝑓 𝑟 𝐸∞ 𝑟 𝑑𝑟 = − ⋅ 𝑅 𝑘𝜎 ,

 (17) 
and 𝑅 𝑘𝜎 ≡ 4𝑘 𝜎 𝑑𝜁∞ 𝑑𝜂 ⋅ 𝜁𝜂𝐼 𝑘𝜎 𝜂 𝐾 𝑘𝜎 𝜁 𝑒  . 

(18) 
There are other forms of 𝑅 𝑘𝜎  such as 𝑅 𝑘𝜎 = 𝑘 𝜎 𝑒 𝐸𝑖 𝑘 𝜎 ,  (19) 
and 𝑅 𝑘𝜎 = 2𝑘𝜎 𝛷 𝑥 𝑠𝑖𝑛 𝑘𝜎 𝑥 𝑑𝑥∞ ,  (20) 
with 𝛷 𝑥 = | | − √ 𝑒𝑥𝑝 𝑒𝑟𝑓𝑐 | | ,  (21) 
and numerical evaluation verifies that they are equiva-

lent to Eq. (18). 
For uniform transverse charge distribution, instead of 

Eq. (15), we take 𝑓 𝑟 = − 𝜌 𝑘 𝐻 𝑎 − 𝑟 ,  (22) 
where 𝐻 𝑥   is the Heaviside step function, 𝑎 is the beam 
radius and the normalization of 𝑓 𝑟  is 2𝜋 𝑟𝑓 𝑟 𝑑𝑟∞ = − 𝜌 𝑘 .  (23) 
Inserting Eq. (22) into Eq. (14) yields 𝐸 𝑟 = 𝑖𝑘 𝜌 𝑘 × 𝐼 𝑘𝑟 𝜂𝐾 𝑘𝑎 ⋅ 𝜂/ 𝑑𝜂 + 𝐾 𝑘𝑟 𝜂𝐼 𝑘𝑎 ⋅/𝜂 𝑑𝜂 . (24) 
Averaging Eq. (24) over the transverse plane leads to 𝐸 , = 𝑟𝑑𝑟𝐸 𝑟 = 𝑖 𝜌 𝑘 𝑅 𝑘𝑎 , (25) 
with 𝑅 𝑘𝑎 ≡ 𝐼 𝜏 𝐾 𝜏 𝜏 𝑑𝜏.  (26) 
Figure 1 shows that for the same RMS beams size of 

0.1 mm, the field reduction for the uniformly distributed 
beam is more significant than that for the electrons with 
Gaussian transverse spatial distribution. 

Figure 1: Reduction factor as calculated from Eq. (18) for 
the Gaussian transverse distributed electrons with RMS 
beam width of 0.1 mm and that calculated by Eq. (26) with 
beam radius of 0.2 mm. 

Multiplying both sides of Eq. (1) by 𝑒𝑥𝑝 −𝑖𝑘𝑧  and in-
tegrating over z yields 𝑓 𝑘, 𝑣 , 𝑡 + 𝑖𝑘𝑣 𝑓 𝑘, 𝑣 , 𝑡 −𝐸 𝑘, 𝑡 𝑓 𝑣 = 0,  (27) 

with 𝑓 𝑘, 𝑣 , 𝑡 ≡ 𝑒 𝑓 𝑧, 𝑣 , 𝑡 𝑑𝑧. Multiplying 
both sides of Eq. (28) by 𝑒𝑥𝑝 𝑖𝑘𝑣 𝑡   leads to  𝑒 𝑓 𝑘, 𝑣 , 𝑡 = 𝐸 𝑘, 𝑡 𝑒 𝑓 𝑣 .  

 (28) 

Integrating Eq. (29) over time, t, leads to 𝑓 𝑘, 𝑣 , 𝑡 = 𝑒 𝑓 𝑘, 𝑣 , 0+ 𝑓 𝑣 𝐸 𝑘, 𝑡 𝑒 𝑑𝑡 . 
(29) 

Replacing 𝐸 𝑘, 𝑡  with the averaged field for uniform 
distribution, Eq. (25), yields 
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 (30) 
with 𝑆∗ 𝑘, 𝑡 ≡ .   (31) 
Integrating Eq. (30) over 𝑣  gives 𝜌 𝑘, 𝑡 = 𝑒 𝑓 𝑘, 𝑣 , 0 𝑑𝑣− 𝑑𝑡 𝑡 − 𝑡 ,∗ 𝑓 𝑣 𝑒 𝑑𝑣 , 

 (32) 
where we used the following relation 

  𝜌 𝑘, 𝑡 = 𝑓 𝑘, 𝑣 , 𝑡 𝑑𝑣 . (33) 
Assuming the unperturbed electron line density is 𝜌  and 

taking the following unperturbed velocity distribution, 
  𝑓 𝑣 = , (34) 
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Eq. (32) becomes 
    𝜌 𝑘, 𝑡 = 𝑒 𝑓 𝑘, 𝑣 , 0 𝑑𝑣− 𝑑𝑡 𝑡 − 𝑡 ,∗ 𝑒𝑥𝑝 −|𝑘|𝜎 𝑡 − 𝑡 .      (35) 
Taking second time derivative of Eq. (36) yields 𝑅 𝑘, 𝑡 + ∗ 𝑅 𝑘, 𝑡  = − ∗ 𝑒 𝑒| | 𝑓 𝑘, 𝑣 , 0 𝑑𝑣 ,            (36) 

where 𝑅 𝑘, 𝑡 ≡𝜌 𝑘, 𝑡 𝑒| | − 𝑒 𝑒| | 𝑓 𝑘, 𝑣 , 0 𝑑𝑣 .  (37) 
If we further assuming the initial perturbation has the 

following form 𝑓 𝑧, 𝑣 , 0 = , ,    (38) 
Eq. (37)becomes 𝑄 𝑘, 𝑡 + , 𝑄 𝑘, 𝑡 = 0,       (39) 
where 𝑆 𝑡 = 𝜋𝑎 , 𝑅 𝑘, 𝑡  is to be calculated from 

Eq. (26) and 𝑄 𝑘, 𝑡 ≡ 𝜌 𝑘, 𝑡 𝑒| |  .       (40) 
For electrons with Gaussian transverse distribution, it is 

easy to obtain an equation with identical form of Eq.(39), 
except 𝑆 𝑡 = 4𝜋𝜎  and 𝑅 𝑘, 𝑡  should be calculated from 
Eq.(18). 

PCA GAIN 
Evolution of the beam cross section, 𝑆 𝑡 , is determined 

by the envelope equation. If we use the normalized variable 
as defined in [2], the coupled equation of motion of the 
PCA system in the lab frame can be written as 𝑎′′ = 𝑘 𝑎 + 𝑘 𝑎 ,   (41) 

and 𝑄 ′′ 𝑘, 𝑠 + , 𝑄 𝑘, 𝑠 = 0  (42) 
with 𝑎 𝑡 = 𝑎 𝑡 /𝑎 , 𝑘 = 𝑙 2𝐼 / 𝛽 𝛾 𝐼 𝑎  and 𝑘 = 𝜀𝑙/𝑎 . Figure 2 shows the PCA gain as a function of 

frequency, 𝑓 = 𝛾𝑘𝑐/ 2𝜋 , with RMS beam width at 

waist of 0.1 mm for the Gaussian distribution and beam 
radius of 0.2 mm for the uniform distribution. 

Figure 2: Comparison of PCI amplification gain for two 
types of transverse charge distribution of the modulation: 
uniform (red) and Gaussian (green). We take 𝜎 /𝑐 = 2 × 10 , 𝑘 = 3.6 and 𝑘 = 7 for the plots. 

SUMMARY 
By incorporating the reduction factor for the longitudinal 

electric field into the Hill's equation, we obtained the fre-
quency dependence of the PCA gain, which shows similar 
behaviour at low frequency as what obtained from 3D sim-
ulation (see Fig. 7 of [3]). 
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