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Abstract
While the APS linac [1] lattice is set up using a model

developed with ELEGANT [2], the thermionic RF gun [3, 4]
front-end beam dynamics has been difficult to model. One
of the issues is that beam properties from the thermionic gun
can vary from time to time. As a result, linac front-end beam
tuning is required to establish good matching and maximize
the charge transported through the linac. We have been using
a Nelder-Mead (or simplex) [5] optimizer to find the best
settings for the gun front-end magnets and steering magnets.
However, it takes a long time and requires fairly good initial
conditions. Therefore, we imported other on-line optimizers,
such as robust conjugate direction search (RCDS) [6], which
is a classic optimizer (as is Nelder-Mead), multi-objective
particle swarm (MOPSO) [7], and multi-generation Gaus-
sian process optimizer (MG-GPO) [8], which is based on
a machine learning (ML) technique. In this paper we re-
port our experience with these on-line optimizers for max-
imum bunch charge transportation efficiency through the
APS linac.

INTRODUCTION
APS has a long history of work related to computer op-

timization of the machine performance. The simplex [5]
algorithm was implemented in sddsoptimize [9] and has
been used widely for APS accelerator tuning [10], including
insertion device steering optimization, injection efficiency
maximization, APS storage ring beam x-y coupling min-
imization, booster-to-storage ring rf phase adjustment to
center injected beam in the rf bucket, on-axis injection setup
and closed bump setup, APS linac beam-based optimization
of rf phase and power, PAR capture efficiency maximization,
and linac beam trajectory optimization.

However, simplex optimization can easily get trapped in
a local minimum, and it takes a long time to converge when
the initial condition is far from the optimum. Sometimes it
requires an experienced physicist or operations expert to per-
form manual tuning in the beginning, especially in the APS
linac trajectory optimization and photocathode gun beam
optimization. After importing RCDS into sddsoptimize,
we often switch between simplex and RCDS for the APS
linac gun front-end charge optimization, because sometimes
simplex works, and sometimes RCDS works. We have been
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searching for an optimizer that does not strongly reply on the
initial state and converges faster than the classic optimizers.

We imported the ML-based Gaussian Process (GP) Op-
timizer [11] in 2019 for APS linac front-end charge opti-
mization [12]. The GP optimizer did not show an advantage
over the classic optimizers, which may be a result of the
large magnet hysteresis, so the pre-built GP model does not
work. Classic optimizers are able to find the best operation
condition as long as the initial state is relatively good; for
example, the initial L3:CM1 charge is around 80% of the
operation required charge. The studies two years ago showed
none of the simplex, RCDS, or GP optimizers were able to
find the best operation condition when the initial condition
was bad [12].

Recently we imported MG-GPO [8] and MOPSO [7] to
APS. The performance of the MG-GPO, MOPOS, RCDS,
and simplex optimizers on the APS linac front-end charge
optimization are studied and compared in this paper.

APS LINAC CHARGE OPTIMIZATION
APS linac charge transportation is maximized by

sddsoptimize [9] with simplex or RCDS and then followed
by a steering controllaw [13] to adjust the linac to PAR [14]
trajectory during the operation. The objective of the opti-
mization is the linac charge at L3:CM1. For the RG2 gun
beamline, the input variables of the optimization are 16 mag-
nets consisting of the RG2 gun front-end quadrupoles and
steering magnets. Since four steering magnets are being
used in the steering controllaw, we remove these four steer-
ing magnets from the optimization. Thus 12 magnets are
being used for the APS linac charge optimization with the
RG2 gun.

Recently RG1, a new gun that needed to be optimized
from scratch, was installed in the backup beamline [15].
After trying different optimizers with different combinations
of RG1 magnets, the RG1 gun beamline was successfully
set up with the optimization.

APS LINAC CHARGE OPTIMIZATION
WITH THE RG2 GUN

The RG2 gun is used for normal operation and has been
operating with a fine-tuned configuration. None of the sim-
plex, RCDS, or GP optimizers can further improve it from
this starting point. After importing the MG-GPO optimizer,
we would like to test if it can improve our current opera-
tion. Since the MG-GPO optimizer uses GP regression to
determine which new solutions have a high probability of
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yielding good performances, hyper-parameters for defining
the GP model are needed. The MG-GPO optimizer provides
two methods for providing the GP hyper-parameters:

• hyper-parameters with optimization: hyper-parameters
are optimized with current solutions,

• hyper-parameters without optimization: hyper-
parameters are predefined without optimization.

Both methods were tested in APS linac charge optimization
with the RG2 gun starting from operational (good) condi-
tions with 0.63 nC initial L3:CM1 charge, as shown in Fig. 1.
The objective value is -1.0 * L3:CM1 charge: the more
negative the the objective value, the higher the L3:CM1
charge. Both methods yielded better results than the normal
operational configuration obtained by the simplex/RCDS
optimizer.
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Figure 1: APS linac RG2 front-end charge optimization start-
ing from a good configuration with MG-GPO. The objective
value is a negative L3:CM1 charge. Without (top) or with
(bottom) hyper-parameters optimization.

MG-GPO hyper-parameters with the optimization method
was faster and got a better solution than hyper-parameters
without the optimization method. Therefore, only hyper-
parameters with the optimization method were used in sub-
sequent studies.

Figure 2 shows the comparison of simplex, RCDS,
MOPSO, and MG-GPO optimizers, starting from a bad state
where the L3:CM1 charge is about 0.1 nC. This initial state
was actually obtained by MG-GPO starting from a bad state
where there is no L3:CM1 charge, for which neither simplex
nor RCDS could work.

When starting from this 0.1 nC charge state, simplex per-
forms the best and is able to find the operation state within

Figure 2: Comparison of all optimizers, starting from a bad
condition where the L3:CM1 charge is about 0.1 nC.

100 evaluations. In other words, simplex is able to find the
target within 10 minutes, with each evaluation taking about
5 seconds. RCDS does not perform well with this initial
state, as it terminates with a sub-optimal result.

After running for several operation shifts or at the begin-
ning of each run, the L3:CM1 charge drifts to about 80%
of the normal operation. Restoring the previous operation
configuration does not help; the simplex/RCDS optimizer
is used to bring the charge back to normal operation, which
takes about half an hour. This is even longer than starting
from the bad state with a 0.1 nC charge, which means that
this 0.1 nC charge state is in the correct track of simplex
optimizer.

Our optimization studies two years ago showed that RCDS
performs better than simplex when starting at a different
0.1 nC initial state [12]. The performance of both simplex
and RCDS optimizers vary significantly depending on the
initial state.

MOPSO is the slowest among the tested optimizers, but it
steadily improves as it goes. MG-GPO takes a longer time
in the first three generations and then becomes faster in the
next three generations because of the randomization in each
generation. Overall, it is slower than simplex in this case,
but gets a better solution. Besides the hyper-parameters,
there are other parameters that can change the performance
of MG-GPO, such as the number of population (Npop) in
each generation, the maximum step size, etc. Due to slow
response and hysteresis problems of the APS linac magnets,
the maximum step size has to be limited to less than 0.2 A,
and the scan range is limited to ±0.5 A of the initial state. In
Fig. 2, the Npop is 30, and the maximum step size is 0.1 A
for MG-GPO. A smaller Npop is expected to be faster. Three
different combinations of Npop and the maximum step size
are being tested for MG-GPO:

• case 1: Npop=20, maximum step size=0.15 A

• case 2: Npop=12, maximum step size=0.10 A

• case 3: Npop=8, maximum step size=0.10 A

The results, from Fig. 3, show that case 2 has the best perfor-
mance, reaching normal operational performance (0.6 nC)
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within 10 minutes. It obtains about a 0.65 nC charge after
20 minutes.

Figure 3: MG-GPO optimization of L3:CM1 charge for the
RG2 gun with different Npop values and maximum step
sizes.

APS LINAC CHARGE OPTIMIZATION
WITH THE RG1 GUN

Recently a new type of gun [16] was installed in the APS
linac RG1 beamline; this gun is longer and has six more
magnets than RG2. There was no available reference con-
figuration to start with. Simplex, RCDS, MOPSO, and MG-
GPO had been tried to optimize the L3:CM1 charge with
all 18 magnets in the RG1 front end as the input variables.
None was successful with the initial state of about 0.2 nC
charge, obtained by manual tweaking. Attempts at varying
the combinations of the input variables (magnets) were also
unsuccessful. However, after reducing the number of input
variables from 18 to 11 and adding a constraint on the trajec-
tory at the L1:P0 BPM, MG-GPO was able to obtain 1.1 nC
L3:CM1 successfully, as shown in Fig. 4. These 11 magnets

Figure 4: MG-GPO optimize on L3:CM1 charge optimiza-
tion for the RG1 gun.

include 9 RG1 front-end quadrupoles and two steering mag-
nets before the RG1 alpha magnet [17], which are the knobs
most sensitive to the L3:CM1 charge. The BPM constraints
for L1:P0 are important for linac beam stability and injec-
tion efficiency as it seems to prevent variable beam scraping
when the trajectory varies.

RESULTS AND DISCUSSION
Our studies show that simplex and RCDS, which have

been used in APS optimization applications, work well when
the initial state is reasonable. MOPSO is several times slower
than the classic optimizers (simplex/RCDS). The GP opti-
mizer [11], imported to APS two years ago, was able to
reach about 70% of the target charge for APS linac charge
optimization when starting from a bad state. However, it was
not successful when starting from a good state [12]. These
conclusions are probably specific to our conditions rather
than general properties of the algorithms.

GP and MG-GPO are machine learning-based optimizers.
The GP optimizer is very fast when the model fits the appli-
cation [11]. However, it requires a large amount of effort to
fit the model. The hyper-parameter of the GP model for APS
linac charge optimization took several 8-hour machine study
shifts to complete, requiring a raster scan of the 16 magnets.
Due to the large hysteresis of the APS linac magnets, the GP
hyper-parameters obtained from the raster scans do not work
well for the online APS linac charge optimization. MG-GPO
performs best among the machine learning-based optimiz-
ers and does not heavily rely on the initial state as do other
optimizers because of its randomization feature. Therefore,
MG-GPO is the preferred non-classical optimizer for APS.

MG-GPO is based on MOGA [18] and Gaussian pro-
cess regression. It uses mutation and cross-over operations
for generating trials and uses Gaussian process regression
to determine favorable solutions, but it has online hyper-
parameter optimization and multi-generation features. Com-
pared to the GP optimizer, it is more general and does not
require a raster scan or offline hyper-parameter fitting. In-
stead, the hyper-parameters are obtained online during op-
timization. MG-GPO also works well for APS SR injec-
tion efficiency optimization in our recent studies. With the
multi-objective feature, it has been applied in APS dynamic
aperture and momentum aperture optimizations using two
objectives.
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