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Abstract

We investigate the electromagnetic radiation of a bunch
moving along a corrugated conductive surface. It is assumed
that the wavelengths under consideration are much greater
than the period of the corrugation. In this case, the corru-
gated structure can be replaced with a smooth surface on
which so-called equivalent boundary conditions (EBC) are
fulfilled. Here, we consider the case of deep corrugation, i.e.
we assume that the depth of the structure is much greater than
its period. Using the EBC we obtain electromagnetic field
components in the form of spectral integrals and calculate
them numerically. It is shown that the bunch generates sur-
face waves propagating in the plane of the structure, whereas
volume radiation is absent at the frequencies under consid-
eration. It is demonstrated that the features of the surface
wave can be used for determining the size and the form
of the bunch. We also consider the energy of the surface
waves. Typical dependences of the energy on corrugation
parameters are obtained and analyzed.

INTRODUCTION

This work aims to study electromagnetic radiation from a
bunch moving along a deep corrugated conductive surface.
We analyze so-called “longwave” radiation when the wave-
lengths are much greater than the period of the structure. In
this case, the analytical solution can be obtained by the use
of the equivalent boundary conditions (EBC) [1]. Besides,
we assume that the corrugation is deep, i.e. the depth is
much greater than the period.

Note that earlier we effectively applied the EBC to solve
“longwave” problems [2–4]. In these papers, we considered
structures with shallow corrugation, that is, when the wave-
lengths are much greater than both the period of the structure
and its depth. In [2], we studied radiation from a bunch mov-
ing in a circular waveguide. In particular, the results of this
work contains a comparison between the theory and simu-
lations in the CST Particle Studio. The agreement can be
considered good, which justifies the use of the EBC even
in situations when the wavelengths are only several times
greater than the period. In papers [3, 4], we demonstrated
that an ultrarelativistic bunch moving in the presence of a
planar shallow corrugated structure excites surface waves.
Analysis of these waves showed that their features can be
used for determining the bunch properties.

∗ simakov.eugeniy@gmail.com

EQUIVALENT BOUNDARY CONDITIONS
We consider a perfectly conductive planar surface in a

vacuum. The surface has rectangular corrugation, as shown
in Fig. 1. We assume that the period of the structure 𝑑 is
much less than wavelengths under consideration 𝜆: 𝑑 ≪ 𝜆.
In this case, the corrugated structure can be replaced with
a smooth surface on which the EBC are fulfilled [1]. In
fact, we deal with an anisotropic surface characterized by a
certain matrix impedance.
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Figure 1: The corrugated structure and the moving bunch.

Unlike previous works [2–4], we study the case of deep
corrugation, i.e. it is assumed that the depth of the structure
𝑑3 is much greater than its period: 𝑑 ≪ 𝑑3. Then, the EBC
have the following form for the Fourier-transforms of electric
and magnetic fields [1]:

𝐸𝜔𝑧∣𝑦=0 = 𝜂𝑚𝐻𝜔𝑥∣𝑦=0, 𝐸𝜔𝑥∣𝑦=0 = 0. (1)

Here, 𝜂𝑚 is an impedance, which is given by the formula [1]

𝜂𝑚 = 𝑖𝑑2
𝑑

tg (𝑘0𝑑3)
1−𝑘0𝑑 ̃𝑙 tg (𝑘0𝑑3)

, (2)

where 𝑑2 is the width of the structure grooves
𝑘0 = 𝜔/𝑐 = 2𝜋/𝜆 is the wave number. The parame-
ter of the corrugation ̃𝑙 is determined by the expression [1]

̃𝑙 = 1
2𝜋[(2−𝜉)2 ln (2−𝜉) −𝜉2 ln 𝜉−2 (1−𝜉) ln 4 (1−𝜉)],

(3)

where 𝜉 = 𝑑1/𝑑, 𝑑1 = 𝑑 − 𝑑2. It should be noted that
parameter ̃𝑙 is positive and small: 0 < ̃𝑙 ≲ 0.082.

GENERAL SOLUTION
We assume that a charged particle bunch moves with con-

stant velocity ⃗⃗ ⃗⃗ ⃗⃗𝑉 = 𝑐𝛽 ⃗𝑒𝑧 at distance 𝑏0 from the surface
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(Fig. 1). The bunch has an negligible transversal size and
longitudinal charge distribution 𝜅(𝑧 − 𝑉𝑡), i.e. the charge
and current densities are 𝜌 = 𝑞𝛿(𝑥)𝛿(𝑦 − 𝑏0)𝜅(𝑧 − 𝑉𝑡) and
𝑗 = 𝑗𝑧 = 𝜌𝑉.

We use Hertz potential ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗ and present it as a sum of
“forced” potential ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗(𝑖) and “free” potential ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗(𝑟). The
“forced” field is the well-known Coulomb field of a charge
moving in an unbounded vacuum, whereas the “free” field
is connected with the influence of the corrugated structure.

One can show that the “free” field is described by the
Hertz potential with two non-zero components. The Fourier-
transforms of these components are

⎧{
⎨{⎩

Π(𝑟)
𝜔𝑥

Π(𝑟)
𝜔𝑧

⎫}
⎬}⎭

= − 𝑞�̃�
𝑐𝑘0

𝑒𝑖 𝑘0
𝛽 𝑧

+∞
∫

−∞
𝑑𝑘𝑥

⎧{
⎨{⎩

𝑅𝑥

𝑅𝑧

⎫}
⎬}⎭

𝑒𝑖𝑘𝑥𝑥+𝑖𝑘𝑦0(𝑦+𝑏0)

𝑘𝑦0
, (4)

where 𝑘𝑦0 = 𝑖√𝑘2
𝑥 + 𝑘2

0
1−𝛽2

𝛽2 (Im 𝑘𝑦0 > 0) and �̃� is the
Fourier-transform of the bunch profile:

�̃� = 1
2𝜋

+∞
∫

−∞
𝑑𝜁𝜅 (𝜁) 𝑒−𝑖 𝑘0

𝛽 𝜁, 𝜁 = 𝑧 − 𝑉𝑡. (5)

Relations between the Fourier-transforms of electromag-
netic field and the Hertz potential are given by the formulas
⃗⃗ ⃗⃗ ⃗⃗𝐸𝜔 = ∇⃗ div ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗𝜔 + 𝑘2

0
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗𝜔, ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐻𝜔 = −𝑖𝑘0 rot ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗Π⃗𝜔. Substituting

the electromagnetic field into (1) and solving the system of
equations we obtain

𝑅𝑥 =
2𝑘0𝑘𝑥𝑘𝑦0𝛽𝜂𝑚

𝑘3
0 + 𝛽2 (𝑘2

𝑥 − 𝑘2
0) (𝑘0 − 𝑘𝑦0𝜂𝑚)

, (6)

𝑅𝑧 = −
𝑘3

0 + 𝛽2 (𝑘2
𝑥 − 𝑘2

0) (𝑘0 + 𝑘𝑦0𝜂𝑚)
𝑘3

0 + 𝛽2 (𝑘2
𝑥 − 𝑘2

0) (𝑘0 − 𝑘𝑦0𝜂𝑚)
. (7)

SURFACE WAVES
Further, we will investigate the asymptotical behaviour

of “free” Hertz potential [Eq. (4)]. Note that the integrands
in these formulas have several singularities. In particular,
coefficients 𝑅𝑥 and 𝑅𝑧 have poles

𝑘𝑥=±𝑘𝑥0=±𝑘0

√
√
√
⎷

1−
sgn (𝜂𝑚

0 )
2𝜂𝑚2

0

⎛⎜⎜⎜
⎝

√1+
4𝜂𝑚2

0
𝛽2 − sgn (𝜂𝑚

0 )
⎞⎟⎟⎟
⎠

,

(8)
where 𝜂𝑚

0 = Im 𝜂𝑚. Poles [Eq. (8)] are real under condi-
tion 𝛽 > (1 + 𝜂𝑚2

0 )−1/2. If this inequality is satisfied, the
contributions of the poles are surface waves.

The asymptotical investigation of integrals in Eq. (4)
shows that the initial integration path can be transformed to
the steepest descent path with separation of the contributions
of the pole 𝑘𝑥 = +𝑘𝑥0 for 𝑥 > 0 and 𝑘𝑥 = −𝑘𝑥0 for 𝑥 < 0.
These contributions exist necessarily if the observation point
is close to the corrugated structure. As for the contribution
of the saddle point, it decreases exponentially with increas-

ing in 𝑘0𝛽−1√1 − 𝛽2√𝑥2 + (𝑦 + 𝑏0)2, and we will neglect

it. Emphasize that exponential decreasing the contribution
of the saddle point means the absence of volume radiation.

Calculating the contributions of poles [Eq. (8)] we obtain
the following expressions for the Fourier-transforms of the
electromagnetic field:

⎧{{
⎨{{⎩

𝐸(𝑠)
𝜔𝑥

𝐸(𝑠)
𝜔𝑦

𝐸(𝑠)
𝜔𝑧

⎫}}
⎬}}⎭

= 2𝜋𝑞�̃�𝑘0

𝑐√𝛽2 − 𝑔2

⎧{{
⎨{{⎩

0
− 𝑖𝜂𝑚

0
𝛽 (𝑔2−1) 𝑔−2

⎫}}
⎬}}⎭

exp (𝑖𝑘0𝛽−1𝑧)

× exp [𝑖𝑘0𝛽−1√𝛽2−𝑔2|𝑥|−𝑘0|𝜂𝑚
0 |𝑔2𝛽−2 (𝑦+𝑏0)] , (9)

⎧{{
⎨{{⎩

𝐻(𝑠)
𝜔𝑥

𝐻(𝑠)
𝜔𝑦

𝐻(𝑠)
𝜔𝑧

⎫}}
⎬}}⎭

= 2𝜋𝑞�̃�𝑘0
𝑐

⎧{{
⎨{{⎩

𝑖|𝜂𝑚
0 |𝑔2 (𝛽2−𝑔2)− 1

2

− sgn(𝑥) (𝑔2−1)𝑔−2

−𝑖 sgn(𝑥) 𝜂𝑚
0 𝛽−1

⎫}}
⎬}}⎭

exp (𝑖𝑘0𝛽−1𝑧)

× exp [𝑖𝑘0𝛽−1√𝛽2−𝑔2|𝑥|−𝑘0|𝜂𝑚
0 |𝑔2𝛽−2 (𝑦+𝑏0)] . (10)

Function 𝑔2 in Eqs. (9) and (10) is given by the formula

𝑔2 = 𝛽2

2𝜂𝑚2
0

⎛⎜⎜⎜
⎝

√1 +
4𝜂𝑚2

0
𝛽2 − 1

⎞⎟⎟⎟
⎠

. (11)

Note that Fourier-transforms [Eqs. (9) and (10)] decrease
exponentially with increasing 𝑦, that is these components
describe the surface wave propagating along the structure
and diminishing rapidly with a distance from it.

Further, we present some results of numerical calculating
Fourier-integrals 𝐹 ( ⃗𝑟, 𝑡) = ∫+∞

−∞ 𝑑𝜔𝐹𝜔𝑒−𝑖𝜔𝑡 where Fourier-
transforms are determined by Eqs. (9) and (10). We carry out
the computation for the Gaussian bunch with the following
charge distribution 𝜅𝑔𝑎𝑢𝑠 and its Fourier-transform �̃�𝑔𝑎𝑢𝑠
(see Eq. (5)):

𝜅𝑔𝑎𝑢𝑠 (𝜁) = 𝑒−𝜁2/(2𝜎2)

√2𝜋𝜎
, �̃�𝑔𝑎𝑢𝑠 = 𝑒−𝑘2

0𝜎2/(2𝛽2)

2𝜋 , (12)

where 𝜎 is a half of the bunch length. Figure 2 shows the
dependences of components 𝐻(𝑠)

𝑦 and 𝐻(𝑠)
𝑧 on coordinate 𝑧.

As follows from the plots, the field magnitude increase with
decreasing the length of the bunch 2𝜎 and increasing its
velocity 𝛽. The dependences also allow determining the
bunch length which is equal to the distance between the
extremums of 𝐻(𝑠)

𝑧 .
In addition, we analyse the energy losses of the bunch

which can be obtained by the calculation of the energy flow
through two parallel half-planes 𝑥 = ±𝑥0, 𝑦 > 0. This way
results in the following expression for the energy losses per
the unit of the path length:

𝑑𝑊
𝑑𝑧0

= 1
𝑉

𝑑𝑊
𝑑𝑡 = 2

𝑐𝛽

+∞
∫

−∞
𝑑𝑧

+∞
∫
0

𝑑𝑦𝑆𝑥∣
𝑥=𝑥0>0

, (13)

where 𝑆𝑥 = 𝑐
4𝜋 (𝐸(𝑠)

𝑦 𝐻(𝑠)
𝑧 − 𝐸(𝑠)

𝑧 𝐻(𝑠)
𝑦 ) is the 𝑥-component

of Poynting vector. Equation (13) can be transformed to the
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Figure 2: The components of the surface wave 𝐻(𝑠)
𝑦 (top row) and 𝐻(𝑠)

𝑧 (bottom row) depending on coordinate 𝑧 for the
Gaussian bunch with 𝑞 = 1 nC. The bunch velocity is 𝛽 = 1 (solid black curves) and 𝛽 = 0.75 (dotted red curves). The
bunch length is 2𝜎 = 3 cm (left column) and 2𝜎 = 6 cm (right column). The parameters: 𝑑 = 0.05 cm, 𝑑2 = 0.04 cm,
𝑑3 = 1 cm, 𝑏0 = 3 cm, 𝑥 = 𝑦 = 0, 𝑡 = 0.

expression

𝑑𝑊
𝑑𝑧0

= 2𝑐2
+∞
∬
0

𝑑𝑘0𝑑𝑦 Re(𝐸(𝑠)
𝜔𝑦𝐻(𝑠)∗

𝜔𝑧 − 𝐸(𝑠)
𝜔𝑧𝐻(𝑠)∗

𝜔𝑦 ) . (14)

Substituting Eqs. (9) and (10) into Eq. (14) we obtain

𝑑𝑊 (𝑠)

𝑑𝑧0
= 4𝜋2𝑞2𝛽

+∞
∫
0

𝑑𝑘0𝑘0|�̃�|2

×
𝜂𝑚2

0 + 𝛽2𝑔−4 (𝑔2 − sgn (𝜂𝑚
0 ))2

|𝜂𝑚
0 |𝑔2√𝛽2 − sgn (𝜂𝑚

0 ) 𝑔2
𝑒−2𝑘0𝛽−2|𝜂𝑚

0 |𝑔2𝑏0. (15)
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Figure 3: The energy of the surface wave 𝑑𝑊 (𝑠)/𝑑𝑧0
depending on bunch velocity 𝛽 for the Gaussian bunch
with 𝑞 = 1 nC. The depth is 𝑑3 = 1 cm (solid black
curves), 𝑑3 = 0.8 cm (dotted red curves) and 𝑑3 = 0.6 cm
(dashed-dotted blue curves). The parameters: 2𝜎 = 3 cm,
𝑑 = 0.05 cm, 𝑑2 = 0.04 cm, 𝑏0 = 3 cm.

Figure 3 shows the dependences of energy losses 𝑑𝑊 (𝑠)/𝑑𝑧0
on bunch velocity 𝛽 for different values of structure depth 𝑑3.
As we can see, the energy losses increase with increasing the
velocity and have a maximum when the velocity has a certain
value close to 𝑐. Note also that the range of the velocities,
at which the surface waves are generated, increases with
increasing the depth. This is a significant advantage over
the case of the shallow corrugation, when the radiation is
generated by only ultrarelativistic bunches [3].
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