DIFFUSIVE MODELS FOR NONLINEAR BEAM DYNAMICS

C. E. Montanari†1, A. Bazzani, Bologna University, Bologna, Italy
M. Giovannozzi, CERN Beams Department, Geneva, Switzerland
†also at CERN Beams Department, Geneva, Switzerland

Abstract

Diffusive models for representing the nonlinear beam dynamics in a circular accelerator ring have been developed in recent years. The novelty of the work presented here with respect to older approaches is that the functional form of the diffusion coefficient is derived from the time stability estimate of the Nekhoroshev theorem. In this paper, we discuss the latest results obtained for simple models of nonlinear betatron motion.

INTRODUCTION

In the design stage of high-energy particle accelerators, especially those based on superconducting magnets, such as LHC [1], its upgrade project HL–LHC [2], or the proposed FCC–hh [3], it is fundamental to take into consideration the effects of unavoidable nonlinear magnetic field errors on the beam losses.

A key quantity for the evaluation of the accelerator’s performance is the Dynamic Aperture (DA), i.e. the maximum amplitude of the connected phase-space region where motion is stable up to a given number of turns [4]. Studies have been carried out to characterize and predict the DA as a function of the turns particles make around the accelerator (see [5–7] and references therein), and highlighted how the evolution of DA can be described as a coexistence of weakly-chaotic regions, whose escape rates can be described in terms of a Nekhoroshev-like estimate. Such interest in DA prediction comes from the fact that DA computation requires the tracking of a large number of initial conditions for a large number of turns, typically \(N_t > 10^5 \).

Recent experiments at the LHC allowed to measure the beam losses in presence of nonlinear effects, and a diffusive approach, inspired by the stability estimates of Nekhoroshev theorem for Hamiltonian systems, could allow describing in a quantitative way the long-term beam losses [8, 9]. In this paper, the theoretical background of a diffusive model based on a Fokker-Planck (FP) equation with a Nekhoroshev-like diffusion coefficient is reviewed and discussed in detail.

THE DIFFUSION FRAMEWORK

From Hamiltonian perturbation theory, we know that macroscopic diffusion phenomena have to be related to the presence of significant weakly-chaotic regions [10]. Otherwise, the presence of invariant Kolmogorov–Arnol’d–Moser tori ensure long-term stability [11].

In accelerators, the presence of a multitude of unavoidable small random perturbations [12], as well as slow modulation and transverse tune ripples, could lead to the formation of these weakly-chaotic regions. Therefore, one can assume that particle motion is described by models of the form

\[
H(\vartheta, I, t) = H_0(I) + \xi(t)H_1(\vartheta, I),
\]

where \((I, \vartheta) \) are action-angle variables, \(\xi(t) \) is a continuous stationary stochastic noise with zero mean to represent the effect of the chaotic dynamics. For a symplectic map in the neighborhood of an elliptic fixed point an optimal estimate \(||R|| \) for the Birkhoff Normal Form series reminder is given by [13, 14]

\[
||R|| = A \exp \left[-\left(\frac{I_s}{T} \right)^{\frac{1}{\kappa}} \right],
\]

where \(A \) is a scaling factor, the exponent \(\kappa \) depends on the number of degrees of freedom of the system, and the action \(I_s \) represents an apparent radius of convergence of the perturbative series.

A diffusive approach for the evolution of the action distribution can be used, by application of the Averaging Principle, when the noise decorrelation is sufficiently fast (see [9] for the mathematical detail and [15] for an application to a stochastic symplectic map). The following FP equation holds for the evolution of the action distribution \(\rho(I, t) \)

\[
\frac{\partial \rho}{\partial t} = \frac{\epsilon^2}{2} \frac{\partial}{\partial I} D(I) \frac{\partial}{\partial I} \rho(I, t),
\]

where \(\epsilon \) is a scaling factor related to the perturbation amplitude and, according to (2), the diffusion coefficient reads

\[
D(I) = c \exp \left[-2 \left(\frac{I_s}{T} \right)^{\frac{1}{\kappa}} \right], \quad \int_0^{I_s} D(I) \, dI = 1,
\]

where \(c \) is a normalisation constant and \(I_s \) is the position of the absorbing boundary condition, i.e. the phase-space limit beyond which a particle is considered lost or the position of a collimator. Note \(D(I) \) and \(\rho \) have dimensions \(I^2 T^{-1} \) and \(I^{-1} \), respectively.

ANALYTIC ESTIMATE OF THE CURRENT LOST

Equation (3) provides a means to obtain an analytic estimate for the current lost at the absorbing barrier (see [9] for the detail).

We start by considering the rescaled time \(\tau = \epsilon^2 t \) and by applying the following change of variables

\[
x = -\int_I^{I_s} \frac{1}{D^{1/2}(I')} \, dI', \quad \rho'(x, \tau) = \rho(I, \tau) \frac{dI}{dx},
\]

MC5: Beam Dynamics and EM Fields
D02 Non-linear Single Particle Dynamics
which leads to
\[\frac{\partial \rho'}{\partial \tau} = \frac{1}{2} \frac{\partial}{\partial x} \left[\frac{1}{D^{1/2}} \frac{dD^{1/2}}{dx} \rho' \right] + \frac{1}{2} \frac{\partial^2 \rho'}{\partial x^2}, \]
(6)
where \(D = D(I(x)) \). By introducing the effective potential \(V(x) = -\ln(D^{1/2}(x)) \), we obtain the Smoluchowski form [16]
\[\frac{\partial \rho'}{\partial \tau} = \frac{1}{2} \frac{\partial}{\partial x} \left[\frac{1}{D^{1/2}} \frac{dD^{1/2}}{dx} \rho' \right] + \frac{1}{2} \frac{\partial^2 \rho'}{\partial x^2}. \]
(7)
Equation (7) can be made self-adjoint by means of the following change of variables
\[\rho'(x, \tau) = \exp \left[-\frac{V(x)}{2} \right] p(x, \tau), \]
(8)
and Eq. (7) is cast into the self-adjoint form
\[\frac{\partial p}{\partial \tau} = \frac{1}{4} \left[\frac{d^2V}{dx^2} - \frac{1}{2} \left(\frac{dV}{dx} \right)^2 \right] p + \frac{1}{2} \frac{\partial^2 p}{\partial x^2}. \]
(9)
The general solution of Eq. (9) can be expanded as
\[p(x, \tau) = \sum_{\lambda} c_{\lambda}(\tau) \phi_{\lambda}(x), \]
(10)
where \(c_{\lambda}(\tau) = c_{\lambda}(0) e^{-\lambda \tau} \), and \(\phi_{\lambda}(x) \) are the eigenfunctions of the operator on the r.h.s. of Eq. (9), namely
\[2 \left\{ -\frac{1}{4} \left[\frac{d^2V}{dx^2} - \frac{1}{2} \left(\frac{dV}{dx} \right)^2 \right] - \lambda \right\} \phi_{\lambda}(x) = \frac{d^2\phi_{\lambda}}{dx^2}. \]
(11)
By using the orthogonality and completeness properties of \(\phi_{\lambda}(x) \), the solution for an initial Dirac delta distribution \(\rho'(x, 0) = \delta(x - x_0) \) can be written as
\[\rho'(x, \tau) = \exp \left[-\frac{V(x_0) - V(x)}{2} \right] \sum_{\lambda} e^{-\lambda \tau} \phi_{\lambda}(x_0) \phi_{\lambda}(x), \]
and the current lost at an absorbing boundary in \(x = 0 \), which in the original variables corresponds to \(I = I_a \), reads
\[J(\tau) = \frac{1}{2} \frac{\partial \rho'}{\partial x} \big|_{(0, \tau)}. \]
(12)
If one approximates the force with a constant drift towards the boundary condition, i.e. \(V(x) = -\nu x \), one can obtain an analytic solution to the eigenvalue problem in Eq. (11)
\[-2 \left(\lambda - \frac{\nu^2}{2} \right) \phi_{\lambda}(x) = \frac{d^2\phi_{\lambda}}{dx^2}, \]
(13)
and if we replace this solution into Eq. (12), we obtain the expression for the current lost
\[J(x_0, \tau) = -\frac{|x_0|}{\sqrt{2\pi \tau}} \exp \left(-\frac{(x_0 + \nu \tau / 2)^2}{2\tau} \right). \]
(14)
Note \(J \) has dimension \(t^{-1} \) and for an initial condition \(\delta(x - x_0) \), the linearization of the potential near \(x = x_0 \) provides
\[\nu(x_0) = \epsilon^{1/2} \frac{1}{I(x_0)} \left(\frac{I_0}{I(x_0)} \right)^{1/2} \exp \left(-\frac{I_0}{I(x_0)} \right)^{1/2}, \]
(15)
which can be inserted into Eq. (14), for obtaining an analytical estimate of the current lost.

Equations (14) and (15) provide inevitably an underestimate of the actual current lost, as the actual drift term is a positive-increasing function for \(I_0 \ll I_\nu \). However, we expect a good description of the local behaviour close to the absorbing boundary condition, i.e. we obtain a good estimate of the current lost for initial distributions that are close enough to the absorbing barrier at \(I = I_a \).

NUMERICAL SIMULATIONS

We analyze the diffusive process in Eq. (3) using parameters similar to those in [9]: \(I_\nu = 21.5, \kappa = 0.33, \) and \(\epsilon^2/2 = c. \) The initial condition \(\rho(I, 0) \) is a uniform distribution with a sharp cut, generated by a logistic function, centered at a position \(I_0 < I_a \), namely
\[\rho(I, 0) = \left(1 + e^{-(I-I_0)/c} \right)^{-1}, \]
(16)
where \(\ell \) is chosen so that the cut is smooth enough to avoid issues in the numerical integration of Eq. (3), but smooth enough to not affect the results. In Fig. 1, we show the function \(D(I) \) normalized over the interval \([0, I_\nu]\) as a function of \(I/I_0 \), (top), and the evolution of a distribution with the position of the cut at \(I_0/I_\nu = 0.22 \) and the absorbing boundary condition at \(I_a/I_\nu = 0.233 \) (bottom). The numerical integration of (3) is performed by means of a Crank-Nicolson scheme [17] with 2500 uniform spatial samples over \([0, I_\nu]\), in which \(\ell \) has been set to five times the sampling fineness.

In order to test the estimate defined in Eq. (14), applying a numerical convolution to consider that the form of the initial condition is not \(\delta(x - x_0) \) but (16), and the possibility to determine \(I_\nu \) and \(\kappa \) from the simulated current, two scenarios have been considered: i) \(I_0 \) is varied in a given interval, while \(I_a \) is kept constant; ii) \(I_0 \) and \(I_a \) are varied while keeping their distance constant. In both scenarios, \(I_0/I_\nu \in [0.18, 0.23] \), whereas in the first scenario \(I_a/I_\nu = 0.233 \), and for the second one \(I_a - I_0 = 0.1 \). Both scenarios are relevant for the analysis of past and the proposal of future experiments on beam-halo dynamics.

In Fig. 2, we show the performance of the reconstruction method for \(I_\nu \) and \(\kappa \) from a single simulated current profile. We observe that Eq. (14) underestimates the simulated current profile in both scenarios, but scenario ii) provides a very good reconstruction of the true current. This is not unexpected, as in this case the short distance between the logistic cut (Eq. (16)) and the absorbing boundary makes the linearization in Eq. (15) well justified. However, we also observe that the fit to reconstruct \(I_\nu, \kappa \) performs much better for scenario i), which might be related to the transient effects of the initial distribution and the numerical instabilities they generate to the fitting routine.

Considering the results of the experiments probing the beam-halo dynamics at the LHC [18], we remark that, more than the beam-loss evolution itself, the timings of the various phases of the current loss measurements (e.g. ramp-up,
The key assumption is that in the weakly-chaotic regions of phase space the action variable undergoes a diffusion process whose diffusion coefficient has a functional form derived from the stability estimates of the Nekhoroshev theorem.

Numerical simulations have been performed to assess the performance of a fitting procedure to determine the model parameters of the diffusion coefficient, which is relevant for future experiments and performance measurements on beam losses. It has been shown that the analytical estimate of the evolution of the current lost at the absorbing boundary provides a reasonable estimate of the simulated current lost. Two scenarios have been considered: the first one assumes that the position of the absorbing boundary is fixed, whereas the cut of the initial distribution is varied. The second one assumes that both the absorbing boundary and the cut vary while keeping their distance constant. The latter provides an excellent reconstruction of the model parameters when several simulations are considered together, although it was observed that the transient effects of the initial distribution might affect some fitting procedures.

Further studies are on-going to make this approach more realistic and to apply it to the collimator scans that are used to probe the beam-halo dynamics in the LHC.

CONCLUSIONS AND OUTLOOK

A diffusive framework for the analysis of nonlinear effects on the evolution of the beam distribution has been presented and discussed using stochastic Hamiltonian systems. The key assumption is that in the weakly-chaotic regions of peak, decaying time) can be valid observables from the beam loss monitors to estimate the diffusion coefficient. We are interested in analyzing how accurate is the reconstruction of I_* and κ using Eq. (14), given the timing of multiple current peaks corresponding to different values of I_*/I_*.

The results of the fitting procedure are shown in Fig. 3 in terms of relative errors for κ (top) and I_* (bottom) vs I_*/I_*. The fits based on the interpolation of the entire current shape show a well-defined behaviour: scenario ii) is better in terms of the maximum error in the reconstructed parameters, although scenario i) might be superior for some specific value of I_*/I_*. At the heart of this behaviour is the linearisation of V, and remarkable is the correlation of the model parameters. However, the fit strategy based on fitting simultaneously several current-peak times recovers very accurate values of I_* and κ, and scenario ii) clearly outperforms i).

REFERENCES

D02 Non-linear Single Particle Dynamics

MC5: Beam Dynamics and EM Fields

