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Abstract
A numerical method to design nonlinear double- and

multi-bend achromat (DBA and MBA) lattices with approx-
imate invariants of motion is described. The search for such
nonlinear lattices is motivated by Fermilab’s Integrable Op-
tics Test Accelerator (IOTA), whose design is based on an
integrable Hamiltonian system with two invariants of mo-
tion. While it may not be possible to design an achromatic
lattice for a dedicated synchrotron light source storage ring
with one or more exact invariants of motion, it is possible to
tune the sextupoles and octupoles in existing DBA and MBA
lattices to produce approximate invariants. In our procedure,
the lattice is tuned while minimizing the turn-by-turn fluc-
tuations of the Courant-Snyder actions 𝐽𝑥 and 𝐽𝑦 at several
distinct amplitudes, while simultaneously minimizing diffu-
sion of the on-energy betatron tunes. The resulting lattices
share some important features with integrable ones, such
as a large dynamic aperture, trajectories confined to invari-
ant tori, robustness to resonances and errors, and a large
amplitude-dependent tune-spread.

INTRODUCTION
The Integrable Optics Test Accelerator (IOTA) [1], whose

design is based on an integrable Hamiltonian system with
two invariants of motion [2, 3], paves the way for a new
class of highly nonlinear storage rings. Experiments using a
lattice design with one invariant of motion have also been
performed, both at IOTA and in the University of Maryland
Electron Ring (UMER) [4]. In each case, the lattice is tuned
to provide one or more analytically known invariants of
motion, resulting in a dynamic aperture (DA) that is large
and robust to the presence of resonances.

The storage rings used as dedicated synchrotron light
sources are designed in a different way: a linear achromat
lattice with a desired beam emittance is designed first, and
then the nonlinear dynamics is optimized with sextupoles
and/or octupoles. The nonlinear magnets are often tuned to
control the low order resonance driving terms of the one-
turn map [5] in order to obtain sufficient dynamic aperture.
Under these conditions it is generally difficult, if not im-
possible, to optimize the nonlinear dynamics to produce a
one-turn map with one or more exact invariants. However, it
is sometimes possible to produce approximate invariants, or
quasi-invariants (QI), in these achromat lattices. This paper
describes a procedure for designing near-integrable double-
bend achromat (DBA) and multi-bend achromat (MBA) lat-
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tices with two QI. The motivation for constructing such
lattices is that, although they are not completely integrable,
the DA is large and robust to the presence of resonances.
Like nonlinear lattices such as IOTA, these lattices have a
large amplitude-dependent betatron tune-spread which can
increase instability and space charge thresholds due to im-
proved Landau damping [6, 7]. This research was also moti-
vated by related studies such as the square matrix method [8]
and the constant Courant-Snyder invariant method [9, 10].

LATTICE DESIGN PROCEDURE
By ignoring radiation and longitudinal acceleration, a

charged particle’s transverse motion in a storage ring is a 4-
dimensional Hamiltonian system, described by a symplectic
one-turn map ℳ. If we let the canonical coordinates of the
system be denoted 𝑧 = (𝑥, 𝑝𝑥; 𝑦, 𝑝𝑦), a quantity 𝑓 (𝑧) is an
invariant of the map ℳ if:

𝑓 (ℳ(z)) = 𝑓 (z). (1)

If two such invariants 𝑓𝑖, (𝑖 = 1, 2) exist, if they are indepen-
dent:

∇𝑓1 × ∇𝑓2 ≠ 0, (2)

and if they Poisson-commute:

[𝑓1, 𝑓2] = (𝜕𝑓1
𝜕𝑥

𝜕𝑓2
𝜕𝑝𝑥

− 𝜕𝑓1
𝜕𝑝𝑥

𝜕𝑓2
𝜕𝑥 )

+ (𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑝𝑦

− 𝜕𝑓1
𝜕𝑝𝑦

𝜕𝑓2
𝜕𝑦 ) = 0, (3)

the lattice is Liouville integrable [11, 12]. The behavior of
trajectories for a completely integrable system is well-known,
i.e., all its trajectories are confined to tori with well-defined
and stable tunes.

When the map ℳ is linear and uncoupled, the Courant-
Snyder actions 𝐽𝑥 and 𝐽𝑦 form the most commonly-used
Poisson commuting pair of invariants, where:

𝐽𝑥 = 1
2( ̄𝑥2 + ̄𝑝2

𝑥) = 1
2 (𝛾𝑥𝑥2 + 2𝛼𝑥𝑥𝑝𝑥 + 𝛽𝑥𝑝2

𝑥) , (4)

in the horizontal plane, with a similar expression for 𝐽𝑦. Here
the normalized coordinates ̄𝑥 and ̄𝑝𝑥 are given by:

[ ̄𝑥
̄𝑝𝑥
] = ⎡

⎢
⎣

1
√𝛽𝑥

0
𝛼𝑥

√𝛽𝑥
√𝛽𝑥

⎤
⎥
⎦

[ 𝑥
𝑝𝑥

] , (5)

where 𝛼𝑥, 𝛽𝑥, and 𝛾𝑥 are the horizontal Twiss parame-
ters [13] at the longitudinal location where the Poincaré
section is observed. The canonical action-angle coordinates
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are (Φ𝑥, 𝐽𝑥, Φ𝑦, 𝐽𝑦), where Φ𝑥,𝑦 denotes the betatron phase
in each plane, and the one-turn map is determined by the
phase advance completed in a single revolution:

𝜙𝑥 = Φ𝑥,𝑖+1 − Φ𝑥,𝑖

= − arctan (
̄𝑝𝑥,𝑖+1
̄𝑥𝑖+1

) + arctan (
̄𝑝𝑥,𝑖
̄𝑥𝑖

) + 𝑘 ⋅ 2𝜋,

with a similar expression for 𝜙𝑦. Here 𝑘 is the integer part
of the betatron tune. The phase advance values 𝜙𝑥, 𝜙𝑦 are
independent of the actions 𝐽𝑥 and 𝐽𝑦.

In a realistic storage ring, once the linear lattice and the
nonlinear magnet locations are fixed, the one-turn map ℳ
depends on the nonlinear magnet strengths 𝐾𝑖, with 𝑖 ≥ 2.
It is difficult, if not impossible, to tune the 𝐾𝑖 so that ℳ
possesses even one exact invariant. However, we can imitate
the linear case by constructing a nonlinear system in which
the Courant-Snyder actions 𝐽𝑥, 𝐽𝑦 form a pair of approximate
invariants, as illustrated in Fig. 1. Unlike the linear case,
however, the phase advance values 𝜙𝑥 and 𝜙𝑦 can depend
on the actions 𝐽𝑥 and 𝐽𝑦.

Figure 1: Schematic illustration of a rotating trajectory
observed at a Pioncaré section with normalized coordinates
( ̄𝑥, ̄𝑝𝑥). The fluctuations of the action 𝐽𝑥 and phase advance
𝜙𝑥, in multiple-turn tracking simulations are the objectives
to be minimized. A similar picture applied in the vertical
plane.

The procedure is as follows. To optimize the behavior
of the Courant-Snyder action 𝐽𝑥 within the available DA,
multiple particles with different values of 𝐽𝑥,0 are launched.
Element-by-element tracking of this set of particles is used
to compute the turn-by-turn evolution of 𝐽𝑥. The tracking
is implemented with a kick-drift symplectic integrator [14],
to preserve the geometry of the Hamiltonian system. The
available nonlinear knobs are simultaneously tuned to mini-
mize the turn-by-turn fluctuations of 𝐽𝑥 for each particle, as
illustrated the left subplot in Fig. 2.

At the same time, we minimize the turn-to-turn varia-
tions of the horizontal phase advance. Instead of directly
calculating 𝜙𝑥, the turn-to-turn evolution of ̄𝑥 ± 𝑖 ̄𝑝𝑥 [15]
was analyzed in the frequency domain. One reason for using
such a spectral method is to determine whether the fractional
tune is below or above the half integer. The amplitudes
of the two leading harmonics were computed utilizing the
Numerical Analysis of Fundamental Frequencies (NAFF)

Figure 2: Schematic illustration of (1) the fluctuation of
actions Δ𝐽𝑥 starting from different initial amplitudes (left),
and (2) the spectrum obtained from turn-by-turn trajectory
data ̄𝑥 ± 𝑖 ̄𝑝𝑥 (right). The ratio between the amplitudes of the
two leading harmonics 𝐴2

𝐴1
is the objective used to minimize

the orbit tune diffusion.

technique [16]. By tuning the nonlinear knobs, the ratio be-
tween the two leading harmonics 𝑟 = 𝐴2

𝐴1
was minimized as

shown in the right subplot in Fig. 2. As a consequence, the
smaller amplitude components were also suppressed. Note
that this procedure is performed independently for several
initial conditions of varying amplitude. As a result, the tune
diffusion of each particle is suppressed, but the tunes may
be amplitude-dependent. The same procedure is repeated
for the vertical plane.

Since we want to minimize the fluctuations of four differ-
ent quantities with different initial conditions simultaneously,
the construction of such a nonlinear lattice becomes a typical
multi-objective optimization problem: given a set of nonlin-
ear knobs 𝐾𝑖 within their allowed ranges; subject to some
constraints, such as certain desired chromaticities;simultane-
ously minimize four objective functions, i.e., Δ𝐽𝑥,𝑦

𝐽𝑥,𝑦
and 𝑟𝑥,𝑦

of multi-particles launched from different initial conditions.
The Nondominated sorting genetic algorithm-II [17] was
used to implement the optimization.

Thus far, we have only discussed uncoupled linear lattices.
When linear coupling is present, a different parameterization,
such as the one described in [18], is needed.

APPLICATIONS
We applied this method to optimize a nonlinear DBA

lattice for the NSLS-II main storage ring, which is presently
in operation, and a under-design hybrid-MBA candidate
lattice for the future upgrade.

Double-Bend Achromat
NSLS-II [19] is a dedicated 3rd generation medium energy

(3 GeV) light source operated by BNL. The storage ring’s
lattice is a typical DBA structure. In this configuration, three
families of chromatic sextupoles are used to correct its chro-
maticity to +7. Then six families of harmonic sextupoles in
dispersion-free sections are used as tuning knobs.

Below we present the nonlinear lattice performance of
an optimized solution using the tracking simulation code
elegant [20]. Figure 3 illustrates the on-momentum DA
(through 1,024 turns of particle tracking). Each stable initial
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condition is colored with the tune diffusion rate (over 1,024
turns) obtained using the NAFF technique.

Figure 3: DA of the DBA lattice observed at the center of
the long straight section (left). Tune footprint of the DBA
lattice in the tune space (right). A large amplitude-dependent
tune-spread is observed, and various resonance lines can be
crossed. Colors indicate the tune diffusion rate.

One of the features of an integrable system is that the
trajectories are confined to tori in the phase space. This is
apparent in the turn-by-turn tracking data shown in Fig. 4.
Although trajectories begin to deviate from the Courant-
Snyder ellipse gradually when the amplitude increases, they
are still confined to deformed tori. It therefore appears that
this lattice possesses two QIs whose values near the reference
orbit are quantitatively close to the Courant-Snyder actions.

Figure 4: Simulated trajectories of the DBA lattice starting
from different initial conditions in the horizontal (left) and
vertical (right) phase space. Within the DA, although the
trajectories deviate from the Courant-Snyder ellipse, they
are still confined to thin tori.

The robustness of this lattice has been confirmed in both
simulation and experiment. After adding various realistic
errors to the magnets in the simulation, a sufficient DA for
off-axis injection still remains. This lattice has been success-
fully commissioned at NSLS-II by modifying the sextupole
configuration. Compared with the nominal NSLS-II lattice,
the required bunch-by-bunch feedback amplitude gain for
this nonlinear lattice is reduced by 50% and 75% in the
horizontal and vertical planes, respectively (in the case of
400 mA stored beam current). This appears to be due to the
increased chromaticity and nonlinear tune-spread.

Multi-Bend Achromat
Currently various MBA-type lattices already reach

diffraction-limited horizontal emittances to deliver much
brighter X-ray beams. Like the DBA case, it is interest-
ing to explore whether it is possible to design a nonlinear

MBA lattice with two QIs. An ESRF-EBS type hybrid
7BA lattice [21] is being considered as one of the options
for the future NSLS-II upgrade. A two-stage optimization
has been implemented on it. First, the settings of the chro-
matic and harmonic sextupoles were optimized to correct the
chromaticities, to minimize the fluctuations of the Courant-
Snyder actions, and to maximize the ratio of the two leading
harmonics. After this procedure, four octupoles inside the
dispersive bumps were optimized to further minimize these
objectives. The resulting DA and trajectories in the phase
space are shown in Figs. 5 and 6.

Figure 5: (Color) DA of the MBA lattice in the transverse
𝑥 − 𝑦 plane colored with the tune diffusion rate. A large
amplitude-dependent tune-spread is observed in the MBA
lattice constructed with QIs.

Figure 6: Simulated trajectories of the MBA lattice in the
horizontal (left) and vertical (right) phase space. The vertical
trajectories begin to smear out from thin tori gradually, but
some patterns are visible.

SUMMARY
We demonstrated that a conventional DBA or MBA lattice

can be retuned to possess two approximate invariants by opti-
mizing the settings of only the sextupoles and octupoles. The
resulting DA is large (but finite), most particle trajectories
are regular and confined to tori, and the amplitude-dependent
betatron tunes are well-defined and stable. Similar to a lat-
tice such as IOTA, a large nonlinear tune-spread exists that
can provide enhanced Landau damping.
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