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Abstract
Space-charge models typically assume instantaneous prop-

agation of the electromagnetic fields between particles in a
bunch, describing forces in the frame of the reference par-
ticle. In this paper, we construct a space-charge tracking
code from the retarded Liénard—Wiechert potentials, which
are covariant by design, in a Lagrangian formulation. Such
potentials are manipulated with covariant derivatives to pro-
duce the necessary equations of motion that will be solved
in a test system of two-particles at various relative energies.
Magnetic dipole moment dynamics are also evaluated where
applicable.

COVARIANT EQUATIONS OF MOTION
The study of retarded potential interactions between

charged particles has had a renewed interest in recent years,
especially for THz undulators [1, 2], electron beam inter-
action with high-intensity lasers [3–5], as well as being
a standard tool in heavy-ion collision analysis [6–9]. We
present here the framework for a fully covariant space-charge
tracking routine, which easily incorporates external poten-
tials and magnetic dipole moment dynamics.

We begin with the Liénard-Wiechert potential in covariant
form [10]

𝐴𝛼(𝑥𝛼) = ⃗𝑒 𝑉𝛼(𝜏)
𝑉 ⋅ [𝑥 − 𝑟(𝜏)] ∣

𝜏=𝜏0

, (1)

where ⃗𝑒 is source charge, 𝑥𝛼 is the observer position, and
𝑟𝛼(𝜏) is the source charge position. We use the typical
arrow accent to denote the source particle, a reverse accent
arrow is used for quantities pertaining to the observer, as in
⃗𝑒1. Gaussian units are used throughout the paper.

The source particle’s four-position and velocity are de-
fined in the usual way:

𝑟𝛼(𝜏) = {𝑐𝜏, 𝐫}
𝑉𝛼(𝜏) = {𝑐𝛾, 𝐮}, (2)

where 𝜏 is the observer proper time and where the metric
𝑔𝛼𝛽 = {1, −1, −1, −1} is used going forward; 𝜏0 is defined
by the light-cone constraint

[𝑥 − 𝑟(𝜏0)]2 = 0.

The condition 𝜏 = 𝜏0 is required for any instance of the
retarded potential. This constraint can also be used to define
𝑅 ≡ 𝑥0 − 𝑟0(𝜏0) = |𝐱 − 𝐫(𝜏0)| along with 𝑅𝜌 = {𝑅, n̂𝑅}.
The denominator of Eq. (1) can be reduced to

𝑉 ⋅ [𝑥 − 𝑟] = 𝑉𝜌𝑅𝜌 = 𝛾𝑐𝑅(1 − 𝜷 ⋅ n̂), (3)
∗ ben.folsom@ess.eu
1 These accents do not designate 3-vectors, which are set in boldface.

where n̂ is the unit vector directed from the source to the
observer.

We can track a particle at the observer position using Jack-
son’s covariant equations of motion for a charged particle in
an external field [11]

𝑑𝑥𝛼

𝑑𝜏 = 1
�⃗� (𝒫𝛼 − ⃗𝑒

𝑐𝐴𝛼)

𝑑𝒫𝛼

𝑑𝜏 = ⃗𝑒
�⃗�𝑐 (𝒫𝛽 −

⃗𝑒𝐴𝛽
𝑐 ) 𝜕𝛼𝐴𝛽. (4)

The canonical momentum is used here (only necessary for
the observer). It is defined as

𝒫𝛼 = �⃗�𝑉𝛼 + ⃗𝑒
𝑐𝐴𝛼. (5)

We then turn to [12] for a workable form of 𝜕𝛼𝐴𝛽, where
the velocities belong to the source particle

𝜕𝛼𝐴 = (− 𝑉𝛼

𝑉𝜌𝑅𝜌
+ 𝑅𝛼

𝑉𝜌𝑅𝜌

𝑑
𝑑𝜏) 𝐴. (6)

To find practical equations of motion from this point, a
number of identities are helpful [10, 12]

𝑑𝑉𝛼

𝑑𝜏 = [𝑐𝛾4𝜷 ⋅ �̇�, 𝑐𝛾2�̇� + 𝑐𝛾4𝜷(𝜷 ⋅ �̇�)] ≡ ̇𝑉

𝑑
𝑑𝜏 [𝑉𝜌𝑅𝜌] = −𝑐2 + 𝑅𝜌 ̇𝑉𝜌

𝑉𝜌𝑉𝜌 = 𝑐2, (7)

which, using Eq. (1), yields

𝑑𝐴𝛽

𝑑𝜏 = ⃗𝑒 [
̇𝑉𝛽

𝐾𝑐 −
̇𝑉𝛼𝑅𝛼𝑉𝛽

𝐾2𝑐2 + 𝑉𝛽

𝐾2 ] (8)

𝜕𝛼𝐴 = ⃗𝑒 [
̇𝑉𝛽𝑅𝛼

𝐾2𝑐2 − 𝑉𝛼𝑉𝛽

𝐾2 + 𝑅𝛼𝑉𝛽

𝐾3𝑐
] , (9)

where we have used the shorthand 𝐾 ≡ 𝛾𝑅(1 − 𝜷 ⋅ �̂�).

Inserting Eq. (9) into Eq. (4) results in a practical equation
of motion for momentum:

𝑑𝒫𝛼

𝑑𝜏 = ⃗�⃗�𝑒
⎡⎢⎢
⎣

𝑅𝛼 ̇⃗𝑉
𝛽

�⃗�𝛽

𝐾2𝑐3 −
⃗𝑉𝛼 ⃗𝑉𝛽�⃗�𝛽

𝐾2𝑐
+

𝑅𝛼 ⃗𝑉𝛽�⃗�𝛽

𝐾3𝑐2
⎤⎥⎥
⎦

. (10)

We can expand this equation for its zero component and 𝑖,
an arbitrary position component:

𝑑𝒫0

𝑑𝜏 = ⃗�⃗�𝑒�⃗�[ �⃗�2�⃗� ⋅ ̇�⃗�
𝑐𝑅(1 − �⃗� ⋅ �̂�)2

− 1
𝑅2(1 − �⃗� ⋅ �̂�)2

+ 1
�⃗�2𝑅2(1 − �⃗� ⋅ �̂�)3

] (11)
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𝑑𝒫𝑖

𝑑𝜏 = ⃗�⃗�𝑒�⃗�[
⃗𝛽𝑖�⃗� ⋅ �⃗�

𝑅2(1 − �⃗� ⋅ �̂�)2
− 𝑛𝑖�⃗� ⋅ �⃗�

�⃗�2𝑅2(1 − �⃗� ⋅ �̂�)3

−
𝑛𝑖�⃗� ( ̇�⃗� + �⃗� {�⃗� ⋅ ̇�⃗��⃗�2})

𝑐𝑅(1 − �⃗� ⋅ �̂�)2
]. (12)

For a qualitative look, we can take the following case: �⃗�
and �̂� are parallel (perfectly head-on approach) such that
�⃗� ⋅ �̂� = ⃗𝛽. For further simplification, we take the source
velocity as constant, and the observer velocity is negligible.
This leaves

∣ 𝑑𝒫𝛼

𝑑𝜏 ∣
2

= { 𝑒2

𝑅2 [− 1
(1 − ⃗𝛽)2

+ 1
�⃗�2(1 − ⃗𝛽)3

]}
2

, (13)

where the high and low energy limits can be found by ex-
panding the �⃗� in the denominator of the second term.

∣ 𝑑𝒫𝛼

𝑑𝜏 ∣ |�⃗�|→1= 𝑒2�⃗�2

𝑅2
|�⃗�|→0= 𝑒2

𝑅2 . (14)

The 𝛾2 dependence as �⃗� → 1 indicates that such velocity-
dependent interactions can be substantial beyond the fem-
tometer scale where they are typically studied [6]2. This
approximation is non-radiative, since we have taken ̇⃗𝛽 = 0;
typically, such velocity-dependent forces are considered near-
field. However, it is clear that for 𝛾≫1, the relevant distance
scale may be greater. One should keep in mind, however,
that this is a peak value, only for perfectly aligned particles.

SPIN DYNAMICS
Here we follow [13], which derives spin as a consequence

of symmetries in Minkowksi space, thus requiring no mag-
netic monopoles or current loops. Ignoring the anomalous
magnetic moment, we use

𝑑𝑠𝛼

𝑑𝜏 = ⃗𝑒
𝑚𝐹𝛼𝛽𝑠𝛽 − 𝑑𝑚

𝑚 𝑠 ⋅ 𝜕 (𝐹∗𝛼𝛽) 𝑠𝛽, (15)

where ⃗𝑒
𝑚𝐹𝛼𝛽 is the standard Lorentz force applied to the

classical spin four-vector 𝑠, defined in the lab frame as

𝑠𝜇
(LF) = {�⃗� ⋅ 𝐬, 𝐬}, (16)

which is chosen to satisfy 𝑉 ⋅ 𝑠 = 0; this requires defining
the variable 𝑑𝑚 as a magnetic dipole constant analogous to
charge:

𝑑𝑚 ≡ |𝜇|
𝑐2|𝐬|

,

where 𝜇 is the observer particle’s magnetic dipole moment.
For the Liénard–Wiechert potentials, the electromagnetic

tensor 𝐹𝛼𝛽 is

𝐹𝛼𝛽 = 𝜕𝛼𝐴 − 𝜕𝛽𝐴

= ⃗𝑒 [
̇𝑉𝛽𝑅𝛼 − ̇𝑉𝛼𝑅𝛽

𝑐2𝐾2 + 𝑅𝛼𝑉𝛽 − 𝑅𝛽𝑉𝛼

𝑐𝐾3 ] (17)

2 Although this pertains to the magnitude of the canonical momen-
tum |𝒫𝛼|, one can use Eqs. (5), (8), and (14) to show that
𝑚 ∣ 𝑑𝑉

𝑑𝜏 ∣ ∝ 𝑒2

𝑅2 [𝛾2 + 1
𝛾2 ].

and 𝐹∗𝛼𝛽 = 𝜖𝛼𝛽𝛾𝛿𝐹𝛾𝛿 is its Hodge dual.
With equations of motion for the spin itself, we now have

all the necessary components to reconstruct the momentum
equation from Eq. (4) to account for the Stern–Gerlach force
using the Gilbert model [14]:

𝑑𝒫𝛼

𝑑𝜏 = ⃗𝑒
�⃗�𝑐 (𝒫𝛽 −

⃗𝑒𝐴𝛽
𝑐 ) 𝜕𝛼𝐴𝛽 − 𝑑𝑚𝑠 ⋅ 𝜕 (𝐹∗𝛼𝛽) 𝑉𝛽

= ⃗𝑒
𝑐 �⃗�𝛽𝜕𝛼𝐴𝛽 − |𝜇|

𝑐2 ̂𝑠 ⋅ 𝜕 (𝐹∗𝛼𝛽) �⃗�𝛽

= ⃗𝑒
𝑐 �⃗�𝛽𝜕𝛼𝐴𝛽 − |�⃗�𝑒|

2𝑚𝑐3 𝑠 ⋅ 𝜕 (𝐹∗𝛼𝛽) �⃗�𝛽, (18)

where the simplification in the second line contains a
unit vector ̂𝑠𝛼 = 𝑠𝛼/|𝐬|, and the third line is shown for
reference, using |𝑠| = ℏ/2 for a spin 1/2 particle and
|𝜇| = (�⃗�𝑒ℏ)/(2𝑚𝑐) where 𝑔 is the spin 𝑔-factor and ℏ
is Planck’s constant.

An elementary analysis of Eq. (18) gives the following
thresholds for spin terms becoming dominant in 𝑑𝒫

𝑑𝜏 ; first
for ̇�⃗� = 0 considering the 𝑅𝛼𝑉𝛽 term for the diagonal
components in a head-on interaction (i.e. 1 − �⃗� ⋅ ̂𝑛 = 1 − �⃗�):

𝑅
2�⃗� ≈ |𝜇|

|𝑒| = 193.2 fm = 𝜆𝑒
4𝜋, (19)

where 𝜆𝑒 is the Compton wavelength. Then for ̇�⃗� depen-
dence in the high �⃗� limit

̇�⃗��⃗�3 |�⃗�|→1
≈ |𝑒|𝑐

|𝜇| = 1.5 ⋅ 1021 Hz ≈ 4𝜋𝜔𝑒, (20)

where 𝜔𝑒 is the Compton frequency. We again observe
that a high-𝛾 source particle may bring typically negligible
interactions (in the context of accelerator tracking) to a more
appreciable scale.

Note that we have not used the canonical momentum for-
malism for spin in Eq. (15) and, in turn, Eq. (18). Such
formalism stems from the least-action principle and pro-
duces symplectic equations of motion. However, in the case
of the Stern–Gerlach force, the addition of spin-dependent
terms to the action requires a solution with recursive 𝑑𝑠/𝑑𝜏
terms [13].

This formalism for spin is only truly symplectic, then, in
cases where the forces dependent on 𝑑𝑠/𝑑𝜏 can be ignored.
Such forces can be incorporated ad hoc by using, for example,
the full Gilbert model of the Stern–Gerlach force, but we
presume their effects to be negligible for most Liénard–
Wiechert tracking in the context of accelerator simulation,
including spin-polarized beam tracking. Exceptions may be
the incorporation of ultra high-frequency external fields, or
tracking classical spin trajectories to the picometer scale for
a smooth transition regime as a precursor to investigating
quantum-scale interactions.

INTEGRATION ALGORITHM
We first consider the discrete form of Eq. (4). For example,

to construct a first-order, symplectic Euler integrator one
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can choose from

𝒫
+1

𝛼 = 𝒫𝛼 − Δ𝜏𝜕𝐻
𝜕𝑥 (𝒫𝛼, 𝑥

+1
𝛼)

𝑥𝛼
+1

= 𝑥𝛼 + Δ𝜏 𝜕𝐻
𝜕𝒫 (𝒫𝛼, 𝑥

+1
𝛼) (21)

or

𝒫
+1

𝛼 = 𝒫𝛼 − Δ𝜏𝜕𝐻
𝜕𝑥 (𝒫

+1
𝛼, 𝑥𝛼)

𝑥𝛼
+1

= 𝑥𝛼 + Δ𝜏 𝜕𝐻
𝜕𝒫 (𝒫

+1
𝛼, 𝑥𝛼) , (22)

where the +1 notation indicates a component value at a new
timestep3. In our case, the only position dependence in the
derivative terms arises from 𝐴𝛼(𝑅[𝑥, 𝑟], �⃗�, ̇�⃗�). Composi-
tion of these sets of equations using the implicit midpoint
rule of equations leads to conventional second and higher-
order symplectic integrators [16].

These forms are implicit, meaning they must use it-
erative methods to solve for the +1 dependent compo-
nents on the right-hand sides of Eqs. (21) and (22). For
Hamiltonians separable into kinetic and potential terms (i.e.
𝐻 = 𝑈(𝑚𝑉𝛼) + 𝐾(𝑥𝛼)) such integrators are explicit, mean-
ing they can be solved for all unknown +1 components ex-
actly at each timestep. Otherwise, if 𝜕𝐻

𝜕𝑥𝛼 has a component
that does not depend on 𝑥 — or if 𝜕𝐻

𝜕𝒫𝛼 has one which does
not depend on 𝒫 — routes to explicitness are possible.

Although our choice of Hamiltonian and canonical mo-
mentum is suitable for tracking a lab-frame timestep as well
as incorporating external potentials, the dependence of our
equations of motion on both 𝒫𝛼 and 𝐴𝛼 in every component
does not provide such a shortcut to explicitness.

A simple method for making Eq. (21) explicit can be con-
structed by enforcing a condition that |Δ�⃗�| ≪ |𝑅| at every
integration step, such that |𝑅+1| ≈ 𝑅. Combining this with
an explicit version of Eq. (22) would yield a Störmer–Verlet
type second-order integrator. On inspection, finding similar
𝒫-independent partial derivatives for Eq. (22) seems impos-
sible with our choice of Hamiltonian. However, a renormal-
ization derived in a previous work is suitable here [17]

�̃�
+1

𝛼
=

𝒫𝛼 + Δ𝜏𝑞
𝑚𝑐 (𝒫𝛽 − 𝑞

𝑐 𝐴𝛽) 𝜕𝛼𝐴𝛽 − Δ𝜏2𝑞3

𝑚2𝑐3 𝐴𝛼 (𝜕Φ
𝜕𝜏 )

2

1 − Δ𝜏2𝑞2

𝑚2𝑐2 (𝜕Φ
𝜕𝜏 )

2 ,

(25)

3 It is worth considering the 𝑥0 component in discrete form, following
Eq. (22) and [15]:

𝑡
+1

= 𝑡 + Δ𝜏
𝑚 (𝑃0

+1
− �⃗�

𝑐 𝐴0) = 𝑡 + Δ𝜏
𝑚 (�⃗�

+1
+ �⃗�

𝑐 [Φ
+1

− Φ]) , (23)

where Φ is the scalar potential. For head-on interactions, one can take
𝑅
+1

= 𝑅(1 + 𝛽). This yields an upper limit on the ratio of tracked lab
time and observer’s proper time:

Δ𝑡
Δ𝜏 ≤ �⃗�

+1
+ �⃗� ⃗𝑒

𝑐𝑅 (�⃗�2 − �⃗� [1 + �⃗�]) , (24)

which reduces to the familiar Δ𝑡/Δ𝜏 = �⃗�+1 for low source velocity.

where 𝜕Φ
𝜕𝜏 = 𝜕0𝐴0 is the time derivative of the scalar

potential4,5. Although the resulting common prefac-
tor of 𝑞4/(𝑚2𝑐4) for these two terms is approximately
10−29[m−2] we again have a countervailing 𝛾 dependence:
(𝜕Φ/𝜕𝜏)2 ∝ �⃗�8 ̇�⃗�/𝑅2.

An alternative approach improves on the |Δ𝑥| ≪ |𝑅|
approximation by presuming information is available for
the source particle’s trajectory in the upcoming timestep
(i.e. the lapse between present and retarded time is greater
than the chosen timestep by at least a factor of two:
|𝜏 − 𝜏0| = |𝑅|/𝑐 ≥ 2|Δ𝜏|). We can now form a composite of
Eqs. (21) and (22) analogous to the Störmer–Verlet method
with the ordering as follows, beginning with Eq. (25) with
Δ𝜏 → Δ𝜏/2.

�̃�
+1/2

𝛼
{ following Eq. (25), with 𝐴 (𝑥𝛼, 𝑟𝛼, �⃗�, ̇�⃗�) }

𝑥𝛼
+1/2

=𝑥𝛼+ Δ𝜏
2𝑚 [ �̃�

+1/2

𝛼
+ ⃗𝑒

𝑐𝐴 (𝑥𝛼, 𝑟𝛼, �⃗�, ̇�⃗�)]

�̃�
+1

𝛼
= �̃�

+1/2

𝛼
+ Δ�⃗�𝑒

2𝑚𝑐 [ �̃�
+1/2

𝛼
+ ⃗𝑒

𝑐𝐴𝛼 ( 𝑥𝛼
+1/2

, 𝑟𝛼
+1/2

, �⃗�
+1/2

)] 𝜕𝛼𝐴𝛽

𝑥
+1

𝛼 = 𝑥
+1/2

𝛼+ Δ𝜏
2𝑚 [�̃�

+1

𝛼
+ ⃗𝑒

𝑐𝐴 ( 𝑥𝛼
+1/2

, 𝑟𝛼
+1/2

, �⃗�
+1/2

)] , (27)

where the 𝜕𝛼𝐴𝛽 derivatives have equivalent timestep depen-
dencies as the 𝐴𝛼 terms in the same expression. In this way,
inter-particle dependent terms are evaluated on coherent
timesteps. From here, extension to higher-order symplec-
tic integration would employ Lie transformations [18, 19],
where the necessary Poisson brackets can be constructed
using Eq. (10) or a derivative form of Eq. (25), along with
the position components from Eq. (4).

CONCLUSION
We formulated fully covariant equations of motion with

the Liénard-Wiechert potential between two particles in-
cluding the contribution of the spin in terms of magnetic
momentum. We then wrote two explicit algorithms to evalu-
ate such equations for each step of integration. This model
provides an ab initio means to treat ultra-relativistic effects
between charged particles with classical electromagnetic
fields.
4 For cases where this derivative is negligible, Eq. (25) reduces to an

explicit form of Eq. (21) for time-independent 𝜙. In other words, if
Φ+1 − Φ → 0 in Eq. (23), then we have a 𝑑𝑥𝛼

𝑑𝜏 = 𝜕𝐻
𝜕𝒫 component which

does not depend on other 𝑥𝛼 components, which allows for a first-order
explicit integrator [15, 16].

However, in the case of the Liénard—Wiechert potentials 𝜕Φ
𝜕𝜏 ≠ 0 unless

𝑅 ≫ Δ𝑥 and �⃗� ⋅ �̂� = 0.
5 We have ignored spin here, but note instead that one may use a modified

canonical momentum to have composite potential:

𝑃𝛼 = �⃗�𝑉𝛼 + �⃗�
𝑐 𝐴𝛼 + �⃗�

𝑐 �̃�𝛼 = �⃗�𝑉𝛼 + �⃗�
𝑐 �̃�𝛼, (26)

where �̃�𝛼 = [ |𝑔| sgn(�⃗�)
2𝑚𝑐 𝐹∗𝛼𝛽𝑠𝛽], and one can then sub-

stitute ̃𝐴𝛼 into Eq. (25). This implies by Eq. (18) that
𝜕𝛼�̃�𝛽 = |𝑔�⃗�|

2𝑚𝑐3 𝑠 ⋅ 𝜕 (𝐹∗𝛼𝛽), which agrees with the definition
in [13] of 𝐵𝛼 = ⃗𝑒

𝑐 sgn(�⃗�)�̃�𝛼 ≡ 𝐹∗𝛼𝛽𝑠𝛽𝑑.
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