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Abstract

In this work, the current status on the development of a
laser plasma accelerator at the Nuclear and Energy Research
Institute (Instituto de Pesquisas Nucleares e Energéticas,
IPEN/CNEN), in Sdo Paulo, Brazil, is presented. Short
pulses to be produced by an under-development near-TW,
kHz laser system will be used to ionize a gas jet, with a
density profile designed to optimize the self-injection of
plasma electrons. The same laser pulse will also drive a
plasma wakefield, which will allow for electron acceleration
in the self-modulated regime. The current milestone is to
develop the experimental setup, including electron beam and
plasma diagnostics, required to produce electron bunches
with energies of a few MeV. Once this has been achieved,
the next milestone is to produce beams with energies higher
than 50 MeV. Besides kickstarting the laser wakefield ac-
celerator (LWFA) technology in Brazil, this project aims to
pave the way for conducting research on the production of
radioisotopes by photonuclear reactions, triggered by LWFA-
accelerated beams.

INTRODUCTION

Since laser wakefield accelerators (LWFA) were con-
ceptually proposed [1], laser technology has significantly
evolved [2—4]. State-of-the-art LWFA facilities can now
produce high-quality, multi-GeV electron beams [5], by util-
ising gas-filled capillaries to guide ultrashort, near-PW laser
pulses within a few tens of centimeters. However, the low-
repetition-rate operation due to the demanding laser-system
requirements, as well as the complexity added by the cap-
illary target, prevent the wide adoption of such setup for
applications. Studies on high-repetition-rate operation in
the self-modulated regime (SM-LWFA) [6, 7] show that this
alternative might help bridging the gap between LWFA de-
velopment and application. Despite the lower energy and
quality, beams with higher charge can be obtained in the SM-
LWFA, if compared to those produced in the non-linear or
bubble regime [6]. The less-demanding laser requirements
(longer pulses, with lower peak power), and the production
of beams with higher charge [6, 8] at ~ kHz frequencies,
combined with the lower complexity of using gas jets rather
than capillaries, are attractive reasons for revisiting the SM-
LWFA with modern laser systems. In this work, the status
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of the ongoing development of a SM-LWFA at IPEN is
presented. In addition, preliminary estimates from PIC sim-
ulations show that the goal of the current phase, which is
producing electron beams with energies of a few MeV, is
attainable with the proposed setup.

STATUS OF THE EXPERIMENTAL SETUP

Experiments are performed at IPEN with laser pulses
produced by a hybrid Ti:Sapphire/Cr:LiSAF CPA system.
The CPA frontend is a Quantronix Odin laser that generates
~50 fs, 1 mJ pulses at 1 kHz. The system has been modified
to allow for the extraction of the amplified, uncompressed
pulses, which are then sent to a in-house, custom-designed
Cr:LiSAF multipass amplifier [9, 10] and compressor, gener-
ating up to 0.5 TW pulses at SHz. These systems are shown
in Fig. 1. Currently, we are upgrading the system, replacing
the Cr:LiSAF by a multipass Ti:sapphire amplifier, aiming
to obtain near-TW pulses at higher repetition rates.

Figure 1: Laser systems available at the Center for Laser and
Applications. (a) Quantronix Odin Ti:Sapphire (E,, <1 mJ,
f < 1kHz, t = 50 fs); (b) Femtolasers Femtopower Ti:Sap-
phire (E, < 800, f < 4kHz, v =25fs); (c) in-house built,
lamp-pumped Cr:LISAF amplifier (0.5 TW at 5 Hz); (d)
hollow fiber compressor (Ep <350, f <4kHz, T < 6fs,
50-attosecond CEP stabilized).
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For the target area, the vacuum chamber shown if Fig. 2
j will accommodate in-house designed and manufactured de
Laval supersonic gas jets [11-13]. As shown in Fig. 3, com-
putational fluid dynamics is used to evaluate the gas density
; and Mach number distributions for distinct submillimiter
nozzle specifications. Figure 4 shows that, by changing the
ultrashort pulse laser drilling process from percursion to
trepanning, both roundness and roughness were greatly im-
proved. As a consequence, the gas flow properties might be
improved as well.

Figure 2: Vacuum chamber.
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Figure 3: Supersonic gas jets are designed with aid of com-
putational fluid dynamics simulations for the (a) gas density,
and (b) Mach number distribution.

Regarding density diagnostics, a modified Mach-Zehnder
interferometer with ultra-short pulses is being employed
to characterize the density profile of gas targets and laser-
ionized plasmas, in both space and time [14]. Figure 5(a)
shows the phase-shift accumulated by the interferometer
laser beam propagating through a gas jet. This phase-shift
map — which is extracted from an interferogram — can
be used to determine the gas density distribution. While
a continuously flowing gas target can be diagnosed by
continuous-wave (CW) interferometry, pump-probe tech-
niques are needed to analyze a laser-excited plasma. Due
to the short plasma-formation time and excited-ions fast de-
cay, the signal would fade out in CW techniques due to the
exceedingly small duty-cycle. Figure 5(b) shows plasma-
density maps measured at 150 ps and 450 ps after the plasma
creation by focused ultrashort pulses.

NUMERICAL SIMULATIONS

Particle-in-cell (PIC) simulations were performed by us-
ing FBPIC code [15], for the matched propagation (in a
transverse parabolic channel [6]) of a Gaussian laser pulse
in the longitudinal plasma-density profile shown in Fig. 6.
Figure 7 show results from a parameter scan for laser pulses
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Figure 4: De Laval nozzle manufacturing process has been
improved. (a) Laser percursion drilling (150 uJ pulses) in a
copper plate was replaced by (b) trepanning on an alumina
disk. (c) Besides the much improved roundness, scanning
electron micrography shows that the residual roughness on
the trepanned surface is lower than that on the alumina sur-
face.

with peak power ranging from 0.25 TW to 1 TW, and plasma
densities within 0.5 ~ 10x 1020 cm~3. While panel (a) shows
the beam total charge Q, panels (b) and (c) show the me-
dian and maximum kinetic energy, K and K,,,,,,, respectively.
Figure 8 shows simulation results for a laser pulse with peak
power P, = 1 TW, RMS length ¢, = 15 um and waist wy =
7 um (laser strength parameter a, = 0.78), propagating in a

phase-shift map (rad)

Figure 5: (a) Phase-shift map of the gas flow into ~100 mbar
background pressure and 50 bar of N, backing pressure. (b)
Plasma-density maps (in atmosphere) for 150 ps and 450 ps
after its formation.
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plasma with density ng = 2.8 x 102%cm™3, with longitudinal
profile as shown in Fig. 6, and trasnverse homogeneous
profile. Panel (a) shows Q,,;, the charge of electrons with ki-
netic energies £y > Ey ., with Ey ,,;,, ranging from 1 MeV
to 5 MeV, plotted as a function of the pulse propagation dis-
tance s = zg + ct, where zp = =50 um. Panel (b) depicts
the energy spectrum for electrons with E; > 1 MeV, plotted
after these particles have exited the plasma density-profile.
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Figure 6: Longitudinal plasma-density profile. Transversely,
the plasma is homogeneous.
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Figure 7: (a) Beam total charge, and (b) median and (c)
maximum kinetic energy obtained from multiple PIC sim-
ulations, performed for laser pulses with peak power rang-
ing from 0.25 TW to 1 TW, and plasma densities within
0.5~10 x 1029 cm™3.
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Figure 8: (a) Q,,;, the charge of electrons with kinetic ener-
gies Ey > Ej, ;. plotted as a function of s; (b) energy spec-
trum for electrons with E; > 1 MeV, plotted at s=300 pym.

CONCLUSION

In this work, the current status of the ongoing SM-LWFA
development at IPEN was presented. Advances were made
in the gas nozzle designing and manufacturing, and ini-
tial measurements of the gas and plasma density are being
checked/validated. In addition, preliminary simulations cor-
roborated the feasibility of achieving energies of a few MeV
for the proposed setup. Through a collaboration with the
University of Nebraska-Lincoln, the proposed setup will be
experimentally verified with gas nozzles manufactured at
IPEN.. After the laser-system upgrade, such experiments

will be performed at IPEN. Regarding studying the produc- :

tion of Mo via photonuclear reactions triggered by LWFA-
accelerated beams, it will require beam energies with a few
tens of MeV [16, 17], which is the goal of Development
Phase 2. However, theoretical investigation on this subject is
being performed with aid of IPEN Nuclear Engineering staff.
Moreover, the recent approval of an experimental proposal
submitted to the current edition of the LaserNetUS program
will allow us to conduct this research in parallel with the
development of our local SM-LWFA. Finally, despite its lim-
itations, this initiative might become the seed of a national
LWFA program.
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