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Abstract
Both unsupervised and supervised machine learning tech-

niques are employed for automatic clustering, modeling and
prediction of Advanced Photon Source (APS) storage ring
beam lifetime and top-up efficiency archived in operations.
The naive Bayes classifier algorithm is developed and com-
bined with k-means clustering to improve accuracy, where
the unsupervised clustering of APS beam lifetime and top-
up efficiency is consistent with either true label from data
archive or Gaussian kernel density estimation. Artificial
neural network algorithms have been developed, and em-
ployed for training and modelling the arbitrary relations of
beam lifetime and top-up efficiency on many observable
parameters. The predictions from artificial neural network
reasonably agree with the APS operation data.

UNSUPERVISED CLUSTERING OF BEAM
LIFETIME AND TOP-UP EFFICIENCY
The Advanced Photon Source storage ring light source

is an operating third generation synchrotron light source
which has a circumference of 1104 meters and emittance of
3 nm [1]. For storage ring based synchrotron light source,
beam lifetime and top-up efficiency are two critical perfor-
mance indicators. It may be helpful on understanding and
improving the storage ring performance by employing ma-
chine learning techniques to analyze the APS operation data.

K-means clustering is usually employed to group unla-
beled samples into different classes, where samples in the
same cluster may share similar features and follow same
probability distribution, which may suggest k-means cluster-
ing to be combined with a probabilistic classifier. K-means
clustering [2] and naive Bayes classifier algorithms are devel-
oped [3] and applied on APS operation data of lifetime and
top-up efficiency. As shown in Fig. 1, the clustering agree
with the true label for two operation mode with different
bunch fill pattern and lattice chromaticity.

Considering the operation data for one operation mode, it
would be interesting to analyze and possibly understand the
variations on beam lifetime and top-up efficiency. As shown
in Fig. 2, the optimum number of classes is automatically
determined to be 4 by the elbow method. The clustering
in Fig. 2 reasonably agree with the Gaussian kernel density
estimation as shown in Fig. 3. It is observed that when
lifetime is low the top-up efficiency variance is small, and
vice versa. With some investigations on other archived data,
it seems that the storage ring chromaticity was increased
for the lower lifetime cluster, most likely to stabilize some
collective instabilities. Blue cluster may be the preferred
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Figure 1: Lifetime and top-up efficiency of two APS opera-
tion mode, grouped with unsupervised k-means clustering
followed by naive Bayes classifier, given that k = 2.

Figure 2: Lifetime and top-up efficiency of one fill pattern,
by k-means clustering plus naive Bayes classifier where k = 4.

Figure 3: Beam lifetime and top-up efficiency of one fill
pattern, kernel density estimation with several clusters.

area for optimized operations, where both beam lifetime and
top-up efficiency are good. It seems that this cluster is from
the weeks following machine start-up.

DEEP LEARNING ON MODELING AND
PREDICTION OF BEAM LIFETIME

Recently deep learning by artificial neural networks has
successful applications in many fields, such as image and
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Figure 4: True APS beam lifetime of the training, validation and test datasets, as compared to the predictions from artificial
neural network. Reasonable agreement is achieved.

voice recognitions, natural language processing and transla-
tion, online and offline advertising, and automatic driving.
An in-house artificial neural network code has been devel-
oped, benchmarked [4], and employed for this study.

APS operation history data is collected on beam lifetime,
and the following observable parameters which are expected
to have impact on beam lifetime.

• Total energy loss from insertion devices

• Total stored beam current

• Transverse emittance ratio

• RF gap voltage

• Linear chromaticity in both transverse planes

• Number of RF buckets filled in the storage ring

• Vacuum pressure at limiting apertures.

The collected APS operation dataset is divided into train-
ing, validation and test datasets. Several different stored
bunch pattern are covered by this dataset, including 24
bunches, 324 bunches, hybrid bunch fill pattern and oth-
ers. As shown in Figs. 4 and 5, it seems to be possible to
accurately predict the APS beam lifetime, with an RMS er-
ror of 2 − 3% of true beam lifetime. It may be possible to
estimate the level of impacts from the previously discussed
several observable parameters. Shown in Fig. 6 is the sum on
the absolute value of weights in the first hidden layer of the
trained artificial neural network, which may provide some
insights on the importance of each feature. For example, this
analysis seems to agree with the fact that APS beam lifetime
is highly correlated with bunch fill pattern, and transverse
emittance ratio.

DEEP LEARNING AND PREDICTION ON
TOP-UP EFFICIENCY

A similar study is performed on the APS top-up injection
efficiency, top-up beam current and all the beam loss moni-
tors. Two different APS stored bunch pattern of 24 bunches

Figure 5: True APS beam lifetime compared with the artifi-
cial neural network predictions, for the test dataset.

Figure 6: Estimation on impacts from different observable
parameters on APS stored beam lifetime.

and hybrid bunch mode are included in the collected dataset,
which is divided into training, validation and test datasets.
As shown in Fig. 7, it is observed that the lower top-up
efficiency section is for hybrid bunch fill pattern.
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Figure 7: True APS top-up efficiency of the training, validation and test datasets, which are compared to the predictions
from artificial neural network, where reasonable agreement is achieved.

Figure 8: Overall cost alongside the artificial neural net-
work training progress, for the training, validation and test
datasets.

Figure 9: Histograms on all the beam loss monitors data,
where it is observed that some beam loss monitors’ reading
may not be calibrated or precise.

With the trained artificial neural network (training
progress in Fig. 8), it seems possible to accurately predict the
APS top-up injection efficiency from top-up beam current
and all beam loss monitors. The prediction may work in
regardless of the stored bunch pattern of 24 bunches and
hybrid bunches mode. As illustrated by the histograms of all
the beam loss monitors in Fig. 9, the readings of some beam

loss monitors may not be calibrated or precise. On the other
hand, this may demonstrate the capability of artificial neural
network in working on arbitrary and noisy data. A bimodal
distribution is observed on histograms of most beam loss
monitors, which agrees with the fact that there are two bunch
fill patterns in the dataset.
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