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Abstract 
In recent years, machine learning (ML) has attracted in-

creasing interest among the accelerator field. As a complex 
collection of multiple physical subsystems, the design and 
operation of an accelerator can be very nonlinear and com-
plicated, while ML is taken as a powerful tool to solve such 
nonlinear and complicated problems. In this study, we re-
port on several successful applications of ML to accelera-
tor physics at IHEP. The nonlinear dynamics optimization 
of the High Energy Photon Source (HEPS) that is a 4th-gen-
eration light source is a challenging topic. In this optimiza-
tion, we use a ML surrogate model to fast select the poten-
tially competitive solutions for a multiobjective genetic al-
gorithm that can significantly improve the convergence 
rate and the diversity among obtained solutions. Besides, 
we also tried to apply a generative adversarial net to solve 
one-to-many problems of longitudinal beam current profile 
shaping. Unlike most supervised machine learning meth-
ods than cannot learn one-to-many maps, the generative 
adversarial net-based method is able to predict multiple so-
lutions instead of one for a 4-dipole chicane to realize sev-
eral desired custom current profiles. 

INTRODUCTION 
Machine learning (ML) has attracted increasing interest 

in the domain of particle accelerator in recent years. Com-
pared to conventional physical model-based methods, ML 
methods are considered to be more efficient and more 
transferable in the vast majority of cases. By learning from 
the existing data, ML models are able to reveal the corre-
lations hidden in the data which may be strongly nonlinear 
and complicated. So far, a plenty of applications of ML 
have been made to various topics of accelerators [1-5]. In 
this paper, we will discuss several successful ML applica-
tions to the issues of accelerator physics at IHEP. 

The High Energy Photon Source (HEPS) [6] is a diffrac-
tion-limited light source under construction at IHEP. Due 
to the strong nonlinearities, the optimization of the nonlin-
ear beam dynamics, such as the multiobjective optimiza-
tion of dynamic aperture and Touschek lifetime, has be-
come very challenging. In previous studies, evolutionary 
optimization methods like multiobjective genetic algo-
rithms (MOGA) [7] and multiobjective particle swarm op-
timization (MOPSO) [8] are used to solve such optimiza-
tion problems. However, these evolutionary methods usu-
ally require to evaluate a large number of candidate solu-
tions for evolution. In an actual scenario where computing 
resources are limited, e.g. the optimization on the 

Tousheck lifetime of the HEPS lattice that takes about 
three hours for each evaluation, the optimization time can 
become too long and even unacceptable. 

In the presented study, a neural network-based MOGA 
(NBMOGA) is proposed [9]. A neural network is trained 
with the data produced by the early optimization of the 
MOGA as the surrogate model. This machine learning sur-
rogate model is used to fast screen a large number of off-
spring generated from MOGA to select the competitively 
potential solutions. These selected solutions are then eval-
uated by the actual evaluator and used as the evolutionary 
candidates for the MOGA. With these high-quality candi-
dates, a faster convergence rate and a better diversity 
among solutions are expected. 

Another application is to use the ML method to solve the 
one-to-many problems on the temporal shaping of the elec-
tron beam. Details of this work will be presented in a sep-
arate publication [10]. To control the temporal shape to an 
electron bunch, a widely-used method is to manipulate the 
dispersion terms of a magnetic chicane which turns out to 
be one-to-many problems. Current popular methods to 
solve such one-to-many problems are stochastic optimiza-
tion methods that may have great limitation. An important 
limitation of using these stochastic optimization methods 
is that the optimization can easily fall into local optimums 
for a highly nonlinear process where many local optimums 
exist. Besides, for a one-to-many problem, the stochastic 
optimization methods normally lead to one solution while 
with other potential solutions missed. 

To overcome above limitations, we use a semi-super-
vised ML method, the conditional generative neural net-
work (CGAN) [11], to solve one-to-many problems of tem-
poral shaping. We construct a CGAN solver that is trained 
by the stochastically generated dispersion terms of a chi-
cane-type bunch compressor. By feeding different noise 
component to the trained CGAN solver, it is expected to 
simultaneously predict multiple solutions for the same cus-
tom temporal profile. 

NEURAL NETWORK-BASED  
MULTIOBJECTIVE OPTIMIZATION  

ALGORITHM 
Details of the Algorithm 

With the NBMOGA, the first few generations of the op-
timization follow the standard MOGA. As the data pool 
becomes large enough, a neural network is trained with the 
data generated in the early optimization of MOGA to learn 
the correlation between the optimized variables and the ob-
jectives. In the later optimization, the number of offspring 
generated with MOGA is increased to K times that of a 
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Figure 1: Evolutions of population for optimizing DA and Touschek lifetime with five different optimization methods. 
The colour from blue to red represents the index of generation from 1 to 100.  

 
standard MOGA. The objective values of the offspring can 
be estimated quickly with the trained neural network. 
Based on the estimated results, those offspring are ranked 
with the non-dominated sorting method. Only N top-
ranked solutions are randomly selected and used as the 
evolutionary candidates. With their objective performance 
evaluated on the actual evaluator, these N candidates are 
then combined with their parent individuals and ranked 
with the non-dominated sorting method again. The N top-
ranked solutions are selected from the combination to form 
a new generation. 

Optimization of DA and Touschek Lifetime for 
the HEPS Lattice 

The lattice of the HEPS storage ring has 48 hybrid seven 
bend achromats (7BAs), which are grouped in 24 periods. 
After the linear parameters of the lattice were fixed based 
on the global optimization, optimization of DA and 
Touschek lifetime by tuning the strength of multipoles is 
necessary and has been performed for HEPS. 

The two objectives are optimized with five existing op-
timization methods, i.e. MOGA, MOPSO, combination of 
MOPSO and MOGA [12], CEMOGA [13] and NBMOGA, 
with the same initial population.  In each generation, the 
time of training the neural network for the NBMOGA is 
about 10 s, which is much less than the evaluation time 
(~3 h) and can be ignored. Therefore, the evolutionary time 
of NBMOGA required for a generation can be considered 
to be the same as that of other tested optimization methods 
except the CEMOGA. For the CEMOGA, additional “elite 
solutions” are needed to evaluate, which will successively 
call the parallel program twice to evaluate the MOGA off-
spring and the “elite solutions” respectively, and double the 
evolutionary time for this problem. 

The evolutions of population over 100 generations 
(~600 hours for the CEMOGA and ~300 hours for the 
other four methods) are illustrated in Fig. 1. It is found that 

the NBMOGA results in a better non-dominated front with 
higher objective performance and more continuous distri-
bution in the objective space than using other four meth-
ods. If keeping the DA area approximately the same as the 
initial solution, the Touschek lifetime can be further im-
proved by about 10% with the NBMOGA compared to the 
standard MOGA within the same optimization time. 

CGAN SOLVER FOR ONE-TO-MANY 
PROBLEMS OF TEMPORAL SHAPING 

Conditional Generative Adversarial Network 
The CGAN is an extended version of the generative ad-

versarial network [14] that is an emerging ML technique in 
the area of image processing. These generative methods are 
considered to have the potential to handle one-to-many 
problems. The training of the CGAN is via the competition 
of a pair of neural networks, called the generator (hereafter 
referred to as G) and discriminator (hereafter referred to 
as D). G is trained to create fake data samples as authentic 
as possible to fool D, and D is trained to distinguish be-
tween the fake and real samples. An additional label is also 
fed to G so that the G can generate samples with user spec-
ified content. 

How the CGAN Solver Solves Temporal Shaping 
Problems 

In our CGAN solver scheme, the R56, T566, and U5666 
which are the first-, second- and third-order longitudinal 
dispersion terms in the transfer map are taken as training 
data. The corresponding temporal profiles to the training 
data are taken as labels. The two networks of the CGAN 
solver are simultaneously trained with the labelled data. 
The trained solver is expected to predict different potential 
solutions to realize the same target custom profile when 
multiple solutions exist. 
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Figure 2: Longitudinal phase space distribution and temporal profiles of two separate CGAN predictions. The left two 
columns represent the cusp-shaped profile, and the right two columns represent the double-horn profile, respectively. 
R2 is the determination coefficient to the target temporal profile. 

 
Two test temporal profiles that are common in bunch 

compression, i.e. a cusp-shaped profile and a double-horn 
profile (see Fig. 2) are used to test the performance of the 
CGAN solver. The CGAN solver is able to simultaneously 
give multiple sets of R56, T566, and U5666 predictions for the 
same target profile. It is found that these predictions con-
verge to several points in the variable space, which repre-
sent multiple solutions to the target. For each of the test 
temporal profiles, two separate solutions obtained with the 
CGAN solver are selected and the corresponding longitu-
dinal phase space distributions are shown in Fig. 2. It is 
found that the beams in Fig. 2(b, d) are over compressed, 
i.e. the head and tail of the beam are reversed. Neverthe-
less, the over compressed beam finally results in almost the 
same temporal profiles as the under compressed beam in 
Fig. 2(a, c), with a high determination coefficient (close 
to 1) to the target. 

The results in Fig. 2 indicate that with the CGAN solver, 
one can accurately realize different custom desire temporal 
profiles. Furthermore, multiple solutions for the same input 
temporal profile are found with the CGAN solver when 
multiple solutions exist. The acquirement of the multiple 
solutions is crucial for temporal shaping since an under 
compressed beam and an over compressed beam can pro-
vide different benefits in scientific applications [15, 16]. 
Besides, it is found that to realize the cusp-shaped profile, 
the octupole strength required to achieve the longitudinal 
dispersion terms of the solution in Fig. 2(a) is significantly 
higher than that of solution in Fig. 2(b) (-15.7 m-3 and 
0.4 m-3, respectively). The strong octupoles may bring high 
sensitivity during the beamline optimization and operation. 
Additionally, compared to the stochastic optimization 
methods, the CGAN solver can be several orders of mag-
nitude faster to solve the temporal shaping problems be-
cause once the CGAN is trained, it only needs little time 
(fractions of one second) to directly predict the longitudi-
nal terms of a new temporal profile. 

SUMMARY 
A neural network-based MOGA is proposed. The con-

verge rate and diversity among solutions of standard 
MOGA can be significantly improved by using the com-
petitively potential solutions selected by the ML surrogate 
model to replace its original offspring. This method can be 
beneficial to the time-consuming optimization of nonlinear 
dynamics. 

A CGAN solver is proposed for one-to-many problems 
of temporal shaping. The CGAN solver can quickly and 
accurately predict multiple potential solutions for the same 
custom temporal profile. This method can be also applied 
to other similar highly nonlinear one-to-many problems, 
for instance, photon pulse shaping and transverse phase 
space manipulation of an electron beam.  
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