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Abstract 
Although a theoretical calculation might predict the set 

currents of the flat wires, which are used to compensate the 
deviation in the Betatron tune caused by the elliptically po-
larized undulator (EPU), those set currents must still be 
tuned in reality. To approach this reality, a strategy of Ma-
chine Learning was adopted, which included collecting 
real-condition data and using a linear-regression model to 
adjust the parameters of the flat wires.  After training the 
model, the predictions in variables tune x, tune y and beam 
size x were compared with the required amount of correc-
tion of the EPU at various gaps and phases. To prove the 
feasibility of this method, a test was performed under the 
real conditions of accelerator Taiwan Light Source (TLS). 

INTRODUCTION 
Beginning with studies of flat wires [1] of the elliptically 

polarized undulator (EPU) magnet in Taiwan Light Source 
(TLS) in 2016 [2, 3], we theoretically calculated the distri-
bution of the magnetic field of an EPU; we then tried to 
utilize the local magnetic field of the flat wires to compen-
sate the variation of the Betatron tune working point [4, 5] 
and the electron beam size [6], which was produced when 
the EPU magnet altered its gap or phase. If we could use 
the flat wires to solve the problem of the working point 
shift, it could not only diminish the burden on other feed-
back systems, for example the Tune Feedback System [7], 
but also improve the beam injection issue, which had much 
difficulty when the EPU worked in its minimal gap condi-
tion.  The picture of the installing of the flat wires is shown 
in Fig. 1.  

When we applied the theoretically predicted set currents 
in the flat wires for a test in the real machine, we found that, 
because of the differences between the real and theoretical 
conditions (such as the installation position or the electron-
beam trajectory), the theoretically predicted values still had 
to be tuned. We hence decided to use a Machine Learning 
strategy to find the proper set currents of the flat wires, i.e. 
training a model with real-condition data. As the parame-
ters of this model are determined by data, all effects of the 
reality have become reflected in the parameters.      

Although there are many applications of Machine Learn-
ing in the field of accelerators [8, 9], as our purpose is to 
predict continuous values of the output variables, and as 
the contribution of the flat wires is the superposition of 
each wire’s magnetic field, a linear-regression model [10] 

suffices for this study. The code of the model is provided 
by the Python open-source scikit-learn [11].  

One benefit of this method is that it is easy to begin, even 
for operators who have little knowledge of the magnetic 
field calculation of an insertion device (ID); so they can 
easily use set currents of the flat wires to maintain the 
working point constant while the gap and phase of the EPU 
are moving.  

This paper is organized as follows. The influence of each 
pair of flat wires; the collection of data used to train the 
model; the performance and prediction of the trained 
model; the result of test under real conditions of the accel-
erator; and a conclusion.  

 

 
Figure 1: Picture of twenty-eight flat wires installed in EPU 
56 of storage ring TLS. Fourteen wires lie on the top side 
of the vacuum chamber; the other fourteen wires are stick-
ing on the bottom side.  

INFLUENCE OF THE FLAT WIRES  
To understand the influence of the flat wires qualitatively, 

we examined the effect of each flat wire first. For the flat 
wires, the present way of the hardware setting was for each 
two flat wires (for example, the wires shown in Fig. 2(b) or 
(c)) to have the same current; so 14 pairs were available for 
us. The results of adjusting the current in each flat-wire pair 
are shown in Fig. 2(a). As four pairs have positive slopes 
whereas the other ten have negative slopes in the Betatron 
tune in the x-direction (tune x), one can see that the influ-
ences of the four pairs in the middle are similar to the focus 
quadrupole (FQ), whereas the influences of the outer ten 
pairs are similar to the defocus quadrupole (DQ). Sche-
matic diagrams of FQ and DQ are shown in Fig. 2(b) and 
2(c), respectively.  

 ____________________________________________  

†chang.yuhsiang@nsrrc.org.tw 

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB311

MC2: Photon Sources and Electron Accelerators

A05 Synchrotron Radiation Facilities

THPAB311

4399

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



 

 
Figure 2: (a) Results of adjusting the current in each flat- 
wire pair in tune x. The legend at the right shows the num-
ber and slope of each pair of flat wires. (b) and (c) are sche-
matic diagrams of FQ and DQ respectively. The direction 
of the electron beam is opposite to the currents in the flat 
wires.   

DATA COLLECTING AND FILTERING 
To learn the relations between input and output variables 

of the flat wires quantitatively, we randomly scanned all 
possible current settings in the range ±2.0 A to collect the 
data for model training. The current settings of 14 pairs of 
flat wires were taken as input variables; the corresponding 
variations of the tune (x, y) and beam size (x, y) were taken 
as four output variables. There were 4200 events in the 
learning data; the distributions in the three output variables 
are shown in Fig. 3, where one can see, for tune x, tune y 
and size x, that the distributions of their variations are sym-
metric and peaked at zero. The measurement of size y had 
problem during the data-taking so it was hence not consid-
ered in this study.   

 

 
Figure 3: Histograms of learning data in three output vari-
ables: variations of tune x (left), tune y (middle), and size x 
(right).  

In addition to the 1-D distribution, we could also monitor 
two variables together in the same time as a 2-D scatter plot, 
shown in Fig. 4. One can see that correlations exist between 
each two of all variables (the variations of tune x, tune y 
and size x). These correlations mean that, when the value 
of one variable increases or decreases, the trend of how an-
other variable alters is certain (becoming larger or smaller) 
in the present way of the hardware setting.  

One can also see that some data points locate far from 
the mainstream data in Fig. 4. The reason for these abnor-
mal points could be some unknown factors interfering with 
the acquisition of our output variables. As those factors 
were not taken into account as input variables, these abnor-
mal points must be excluded from the learning data to 
avoid misleading in the model training. We thus retained 
only the data in the easier-learning region (between two red 
lines in Fig. 4); 7% of the total amount of data was lost in 
this filtering.  

 

 
Figure 4: 2-D scatter plot of learning data in three output 
variables. Each black dot represents one input-output event. 
The red lines in the plots are for the easier-learning region 
filter. 

MODEL TRAINING AND PREDICTION 
In the model training, the learning data were randomly 

separated into two parts. The part used to train the learning 
model was called training data; the other part used to test 
how well the model could describe the data was called val-
idation data. Once the model had been trained using the 
learning data, we would then use the validation data to 
compare the model-predicted value with the true value in 
each event.  

In the linear-regression model, the output variables (x) 
are connected with the input variables (y) according to this 
equation:   

 𝑦 𝑤, 𝑥 𝑤 𝑤 𝑥 𝑤 𝑥 ⋯ 𝑤 𝑥 .     (1) 
 
Parameters (w) are decided on minimizing the residual 

sum of squares (RSS), defined as  
 𝑅𝑆𝑆 ≡  ∑ 𝑦 𝑦 ,                         (2) 

 
in which 𝑦   is true value and 𝑦   is predicted value for 
event i in the training data. 

The performance of the linear-regression model for the 
validation data is shown in Fig. 5. The model is thought to 
learn the data successfully in an output variable if the co-
efficient of determination (R2-score) is near one. The 
R2-score is defined as 

 𝑅 -score ≡ 1 ∑∑  .                       (3) 
 

 
Figure 5: Performances of the linear-regression model with 
validation data in output variables. The histograms are pre-
dicted values (red) and true values (blue).  

After training the model, we could compare the possible 
distribution of the flat wire (black dot) with the required 
amounts of correction of the EPU at varied gap and phase 
(colored dot) in the 2-D scatter plot, as shown in Fig. 6. 
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The possible distribution was generated with the trained 
model with 10,000 random events, for which the input cur-
rents had the same input constraints (within ±2.0 A). One 
can see that the colored dots do not necessarily fall into the 
black dot region, which means that for some gaps and 
phases the flat wires can satisfy the requirement of multiple 
variables at the same time, whereas for other gaps and 
phases it can satisfy only one variable at one time. 

 

 
Figure 6: Possible distribution of the flat wire (black dot) 
and required amounts of correction of EPU at varied gaps 
and phases (colored dot) in the three output variables. The 
colored dots with the same color belong to the same gap 
but different phases.  

RESULTS OF TESTING IN THE 
REAL ACCELERATOR 

To prove the feasibility of this method, the trained model 
and its predictions must be tested in the real accelerator. As 
the biggest deviation in tune x occurred when the condition 
of the EPU was gap 21.5 mm and phase 28 mm, we chose 
this EPU condition to test ten current settings of the flat 
wires, which were predicted with the model to compensate 
the deviations of the EPU in both tune x and tune y. A con-
straint that the current distribution of 14 pairs of the flat 
wires must be symmetric (left and right), which was in-
spired from the theoretical calculations [2, 3], was added to 
these 10 settings to avoid severe beam loss. The test was 
performed under the “top-up mode”, in which an electron 
beam was injected once a minute. 

During the test, the monitoring variables versus time are 
shown in Fig. 7; the five steps in the testing are described 
as follows: 

1. Before testing the flat wires, the EPU conditions were 
gap 30 and phase 0. The tune feedback system had 
been turned ON. The EPU condition began to change 
to gap 21.5 and phase 28.     

2. Once the EPU conditions had arrived at gap 21.5 and 
phase 28, the tune feedback system turned OFF.  

3. The test of the 10 settings of the flat wires began. Each 
setting was maintained for 10 min.  

4. Once the 10 settings were done, another setting was 
tested, which was derived from the theoretical calcu-
lation and used in the 2016 test, also kept for 10 min.  

5. The current of the flat wires was turned OFF.  
As the result of testing, one can see that a partial beam 

loss occurred when the EPU began to alter its condition to 
gap 21.5 and phase 28 (step (i)), although tune x and tune 
y were still fixed about 758 kHz and 439 kHz respectively 

(the original values) because of the working of the tune 
feedback system. After applying the current setting of the 
flat wires, not only tune x and tune y could be corrected to 
their original values, but also beam current was restored 
gradually, which means that the flat wires have the ability 
to correct tune x without disturbing the beam injection. One 
might notice that there were a few instances of small beam 
loss in step (iii), which were then caused by instability in 
the booster ring. A few drops (about 600 kHz) in tune x 
occurred because the tune measurement and the beam in-
jection occurred at the same time. 
 

 
Figure 7: Monitoring variables vs time in the testing. The 
r3dccti is the beam current in the storage ring. Fx and Fy 
denote tune x and tune y. EPU4gap and EPU4phase are the 
gap and phase of the EPU. U5gap and U9gap are the gaps 
of another two undulators that remained unchanged during 
the test.  

CONCLUSION 
The test in accelerator TLS shows that, although both the 

flat wires and the tune feedback system could compensate 
the deviation in tune caused by the EPU, it seems that the 
flat wires impose less disturbance on the beam injection. 
As the beam injection issue seems to involve more than one 
factor (the tune shift), further studies are required to dis-
cover the true reasons for the beam loss. 

The parametric modeling of the flat wires indicates the 
possibility of fixing multiple variables, which includes 
tune x, tune y and beam size x, with one current setting. 
This possibility has been confirmed in a test using gap 
21.5 mm and phase 28 mm, at which both tune x and tune 
y have been corrected to their original values. Although for 
all gaps and phases it is not always achievable under the 
present mechanism of hardware setting, we plan to adjust 
the hardware setting to expand the multi-variable region of 
the flat wires in the 2-D scatter plot. 

All above experience of the TLS flat wire might inspire 
the operation of TPS to solve similar issues such as beam- 
size shifts, which are significant for the nano-scale light- 
source experimental station.  
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