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Abstract
The targeted beam availability at Department of Energy’s

Spallation Neutron Source (SNS) user facility is greater than
95%. The High Voltage Converter Modulators (HVCMs)
that are used to power the linac klystrons have been one
source of lost beam time. In this work, we explore the use
of machine learning (ML) methods to address two problems
in HVCMs to improve their reliability. First, prediction of
aging and failure of HVCM components such as capacitors,
rectifier assemblies containing hundreds of diodes, and insu-
lating oil, in order to preemptively schedule maintenance and
replacement. Second, automated tuning of the HVCM oper-
ation after service. The ML methodology pursued includes
feature extraction, anomaly detection, and autoencoder net-
work learning. The preliminary result indicates that ML
can provide advance notice of upcoming faults. Our future
work includes the improvement of anomaly prediction rate
and HVCM component health state estimation and HVCM
autonomous re-tuning.

INTRODUCTION
The HVCMs deliver cathode power to the klystrons which

provide RF to the accelerator cavities. They convert 13.8 kV
line power to ±1200 VDC, that is then feed to three H-bridge
converters operating in parallel to produce up to approxi-
mately 135 kV, 1.3 ms pulses at 60 Hz [1]. A simplified
schematic of a modulator is shown in Fig. 1. Prior to sub-
stantial upgrades to the HVCMs, they were the source of
significant downtime as shown in Fig. 2 [2].

The HVCMs at SNS continue to occasionally experience
catastrophic failures which can result in a day or more of
lost beam time. Recent failures since 2018 that resulted in
significant down time were due to failure of the resonant ca-
pacitors Ca, Cb or Cc, failure of the rectifier stacks Da1-Dc2
and overheating of components in the high voltage tank due
to polymerization of the FR3 insulating oil. SNS uses a total
of 14 HVCMs powering 92 klystrons as shown in Fig. 3.

The Proton Power Upgrade [3], will add an additional
3 HVCMs and 28 klystrons. Each HVCM uses a National
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Figure 1: Simplified schematic of a HVCM.

Figure 2: Early operating history of HVCM systems at SNS.

Figure 3: Layout of the SNS linac HVCMs and RF systems.

Instruments PXI based controller to monitor various subsys-
tems and communicate with the control room via ethernet.
The controller has a total of 63 analog and 108 Boolean
PVs, plus an additional 32 waveform channels. The wave-
forms are digitized at 50 MS/s, but decimated to 2.5 MS/s
with a record length of 36 ms centered on the next to last
output pulse. The waveforms representative to the last shot
before shutdown are archived, as well as those characterizing
the initial start up after a HVCM has had maintenance. Full
bandwidth waveforms are saved with a record length of 3 ms,
centered on the last pulse, whenever a fault occurs.
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In addition to the data available through the HVCM con-
troller, SPICE circuit models have been built and verified to
aide in design and troubleshooting. Using the models, it is
possible to quickly simulate many types of fault conditions,
or change the HVCM tuning without risk to equipment or
operations. The HVCMs thus offer a rich source of data for
machine learning (ML). An example of a simulation of the
degradation of a resonant capacitor is shown in Fig. 4. In the
simulation, the capacitor starts off with the nominal value
until 20 ms, after which the value of the capacitor drops
linearly to 50% nominal at 180 ms, then to 10% nominal
after 190 ms. The repetition frequency has been increased
to 200 Hz to provide greater granularity, and an ideal volt-
age source was used to prevent dropping of the capacitor
bank. The impact of the change in capacitor is clearly seen
on the IGBT current for the phase with the failing capaci-
tor as shown. Other signals, not presented, are affected as
well, including the transformer flux and the klystron cathode
voltage.

Figure 4: Results from SPICE simulation of failing capaci-
tor.

The SPICE data collected for the various values of res-
onant capacitance can be utilized to train ML models in a
supervised approach. These models can then be transferred
and retrained on real data from the HVCMs and then used
to observe degradation of the HVCM components over time.
The correctness of operation can thus be verified.

HVCM FAULT DETECTION,
DEGRADATION AND TUNING

The goals for applying ML to HVCM are twofold: (1)
to reduce unscheduled downtime of the accelerator by pre-
dicting the degradation of the HVCM components, and (2)
to reduce the tuning time and improve performance of the
manual tuning of the modulators through automation and
learning.

The modulators are currently tuned before turning over to
operations to compensate for voltage droop as the capacitor
bank discharges during the pulse, and to minimize ripple on
the flat top. Since the high voltage circuit is a resonant cir-
cuit consisting of the transformer and its leakage inductance,
and a resonant capacitor across the transformer secondary,
the gain of the circuit is frequency dependent. We utilize

this dependency to modulate the switching frequency of the
IGBTs so that the gain increases as the capacitor droops.
The frequency is linearly swept from lower to higher fre-
quency during each pulse, and the settings for the sweep
are tuned for each modulator independently by watching
the voltage droop, IGBT peak and commutating currents
and transformer core flux to ensure they all stay within ac-
ceptable ranges during the tuning process. Overshoot and
ringing on the flat top are then minimized in a similar fashion
by adjusting the firing sequences of the IGBT phases and
the width of the initial pulses during the rising edge of the
output pulse. The tuning is saved and not set again unless
maintenance is performed on that modulator. This process
should be fairly simple to automate, but would need supervi-
sion until some confidence is obtained since mistuning could
result in catastrophic failures if an IGBT current is exceeded
for example. Automation of the process would allow for near
real time tuning to adjust for things like variations in the AC
line voltage, or possibly retuning as components degrade
with age to keep the modulator performing at an optimal
tuning until a scheduled maintenance period.

HVCM availability has increased markedly over the years
as improvements have been made and additional machine
safety systems added such as desaturation detection for the
IGBT to turn the switches OFF during a fault such as a core
saturating. This is done in hardware, tripping the modulator
OFF. These faults are detected and the IGBTs turned off in
the microsecond time scale, and normally the modulator can
return to operations after a reset. While we are investigating
the use of ML on these types of faults, it is not clear what
if anything could be done to prevent the modulator from
tripping.

Several fault conditions which have resulted in significant
downtime over the past few years are failures in the rectifier
stacks caused by counterfeited diodes, long term degradation
of the film-foil capacitors used in the resonant circuits, and
polymerization of the FR3 insulating oil resulting in thermal
runaway. Currently, we do not have the instrumentation for
real time dissolved gas analysis needed to decide if the oil
needs to be changed, however, the other faults listed above
can be detected as shown in the SPICE analysis of Fig. 4.
After training the autoencoder ML model on simulated data,
we plan to test on one of the HVCM test stands at the SNS
using different values of resonant capacitors.

Our first objective here is to predict upcoming faults so as
to enable graceful shutdown and avoid catastrophic failure.
We use anomaly detection techniques for fault prediction.
A typical anomaly detection algorithm includes two steps.
The first stage consists of data transformation to enhance
the characteristic features for the nominal data. Example
approaches include transforming the recorded waveform
from the time domain to frequency domain or using ML
models such as convolutional neural networks (CNNs) to
capture hidden spatial/temporal structure from the source
data. The second stage aims at anomaly detection. This step
includes a definition of an anomaly measure and a determi-
nation of a threshold to decide under which conditions the
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waveform observed at a specific time represents an anoma-
lous pattern. Recent deep learning model structures used 
for anomaly detection include variational autoencoders, gen-
erative adversarial networks, and normalizing flow. These 
deep learning models map different types of source data 
for anomaly detection application. They are data hungry 
and potentially computationally expensive and present some 
challenges for direct use for real-time fault detection/pre-
diction in our HVCM application that has relatively small 
training data sets representative for each type of fault.

ML FOR FAULT PREDICTION

We propose a data-efficient anomaly detection technique 
to predict HVCM faults. Our approach will be analyzing 
the data on a moving window. We first transform all the 
waveforms characteristic collected in normal operation, in a 
given time window, from the time domain to the frequency 
domain using discrete cosine transform and calculate the 
mean, μ, and variance q. We then utilize these values for 
predicting anomalies in incoming real-time measured data. 
Specifically, for a given waveform in the same time window, 
we first transform the data to the frequency domain obtaining 
frequency data f and we then calculate p = (f − μ)2 for each 
step in the moving window. Finally, we define the anomaly
measure 𝑎 as the ‖p − q‖2/‖q‖2 where ‖⋅‖2 represents the 
𝐿2 norm. Last, we determine a threshold 𝜆 for anomaly 
detection such that when 𝑎 > 𝜆 then an anomaly is detected. 
The determination of the threshold 𝜆 affects the performance 
of the anomaly detection method. Here we calculate the 
anomaly measure 𝑎 for all waveforms in the nominal data 
set and choose the mean value of 𝑎 as the 𝜆 by considering 
the normal data variation so as to balance the false negative 
and false positive rate.

We applied our anomaly detection and prediction method 
to B flux of one of the modulators (modulator SCL09 in 
Fig. 3). The available data consists of 83 B-flux waveforms 
with a sample rate of 400 𝑛𝑠, where 67 waveforms are 
labeled as nominal and 16 are labeled as faulty. Figure 5 
plots the 83 waveforms in the 10000 time steps during the 
time inter-val 0.016-0.02 seconds. The waveforms labeled 
as nominal are presented in the top subgraph and their 
similarity is eas-ily observed. The 16 waveforms 
representative for faulty operation are presented in the 
bottom subgraph. We use the proposed anomaly detection 
method to provide advance notice of an upcoming fault. 
Figure 6 presents the prediction results of one of the 16 fault 
waveform. The blue curve is the recorded waveform; the 
red vertical line indicates the time when the fault occurs, 
and the green dashed vertical line identified the time when 
the fault is detected using our anomaly detection method.

Our method can predict the fault 1860 μ𝑠 in advance that 
provides a sufficient time to take action for graceful shut-
down and minimize the impact of upcoming failures. We 
successfully predict 11 out of 16 faults where the false nega-
tive rate is about 30% and we are improving our algorithm

to reduce this rate. This preliminary result indicates that ML
can provide advance notice of upcoming faults.

Figure 5: B flux data. Top: 67 nominal data. Bottom: 16
faulty data.

Figure 6: Anomaly prediction results. We use a window size
of 20. Based on the first moving window of data (shown in
the lower left box), our method detects the fault.

CONCLUSION

In this paper we discussed some opportunities for improv-
ing reliability of SNS operation and improvements in beam
availability by predictive maintenance of HVCMs and re-
duced tuning and commissioning time of HVCM controls.
We outlined ML approaches that will leverage simulation
data and existing HVCM operational data for component
health state prediction. We also introduced a fault predic-
tion methodology that does not require large training data
sets, and demonstrate its performance with data from one
HVCM. Part of future work we intend to address the high
miss detection rates by means of more sophisticated data
transformation methods and by data augmentation including
the use of simulated data. HVCM component health state
estimation and HVCM autonomous re-tuning are next steps.
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