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Abstract
A full end-to-end simulation of the ISAC-I linear accelera-

tor has been built in the first order envelope code TRANSOPTR.
This enables the fast tracking of rms sizes and correlations for
a 6-dimensional hyperellipsoidal beam distribution defined
around a Frenet-Serret reference particle frame, for which
the equations guiding envelope evolution are numerically
solved through a model of the machine’s electromagnetic
potentials. Further, the adopted formalism enables the direct
integration of energy gain via time-dependent accelerating
potentials, without resorting to transit-time factors.

INTRODUCTION
Frequent re-tuning of the TRIUMF-ISAC linear accel-

erator [1] is necessary to service the various high energy
experiments scheduled during machine operation. As a
consequence of the separated function nature of the ma-
chine, tunes provided to operators find their origin in a va-
riety of simulation codes, including PARMTEQ, PARMELA,
Trace3D/TraceWin in addition to TRANSOPTR [2], which
has been in continuous use and development at TRIUMF
since 1984 [3]. In this proceeding, we present the full sim-
ulation of accelerated rms envelopes in the recently imple-
mented ISAC-I linear accelerator in TRANSOPTR. This pro-
vides us with a single code simulation capability which
includes native treatment of energy gain from accelerating
potentials. First, an overview of the method of tracking
root mean square (rms) beam envelopes using the Courant-
Snyder hamiltonian for a relativistic, charged particle expe-
riencing time dependent fields, is presented.

TRANSOPTR AND HAMILTONIAN BEAM
DYNAMICS

We start with the s-dependent Courant-Snyder hamilto-
nian for relativistic, charged particles of mass 𝑚 and charge
𝑞, travelling through electromagnetic fields themselves aris-
ing from potentials (𝜙,A), with the curvature parameter set
to ∞:

𝐻𝑠 = −𝑞𝐴𝑠 − √(𝐸 − 𝑞𝜙
𝑐 )

2
− 𝑚2𝑐2 − (𝑃𝑥 − 𝑞𝐴𝑥)2 − (𝑃𝑦 − 𝑞𝐴𝑦)2, (1)

where the components of the vector potential are decom-
posed into its Cartesian components. Note that the scalar
potential directly modifies the local definition of energy in
the potential, to first order.
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RMS Envelope Tracking
From the works of Brown [4] and Sacherer [5], we adapt

to the 𝜎-matrix formalism. Starting with a vector repre-
sentation of the coordinates of the Frenet-Serret reference
particle:

X = (𝑥, 𝑃𝑥, 𝑦, 𝑃𝑦, 𝑧, 𝑃𝑧)𝑇, (2)

for an ensemble of N particles in an ellipsoidal beam distri-
bution, the beam matrix provides the sizes and correlations
across each canonical coordinate:

𝝈 = 1
𝑁

𝑁
∑
𝑖=1

XX𝑇. (3)

Sacherer’s work demonstrated that the rms size of a distri-
bution can also satisfy the Kapchinsky Vladimirsky equation
and that these in fact depend on the linear components of
the forces. Thus, the Hamiltonain of Eq. (1) is expanded to
second order in each of the canonical coordinates:

𝐻𝑠 = 𝐻0 + ∑
𝑖

𝜕𝐻
𝜕𝑥𝑖

∣
0
𝑥𝑖 + 1

2 ∑
𝑖,𝑗

𝜕2𝐻
𝜕𝑥𝑖𝜕𝑥𝑗

∣
0
𝑥𝑖𝑥𝑗 + ... (4)

Since Hamilton’s equations involve the evaluation of first
order derivatives, Eq. (4) will produce solutions detailing
the first order component of the motion needed to track the
rms size of 𝜎. Hamilton’s equations may be expressed neatly
as:

𝑑X
𝑑𝑠 = F(s)X, (5)

where the second order partial derivatives of 𝐻𝑠 are stored
in the infinitesimal transfer matrix:

F(𝑠) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜕2𝐻
𝜕𝑃𝑥𝜕𝑥

𝜕2𝐻
𝜕𝑃2

𝑥
… 𝜕2𝐻

𝜕𝑃𝑥𝜕𝑃𝑧

−𝜕2𝐻
𝜕𝑥2 − 𝜕2𝐻

𝜕𝑥𝜕𝑃𝑥
… − 𝜕2𝐻

𝜕𝑥𝜕𝑃𝑧
𝜕2𝐻

𝜕𝑃𝑦𝜕𝑥
𝜕2𝐻

𝜕𝑃𝑦𝜕𝑃𝑥
… 𝜕2𝐻

𝜕𝑃𝑦𝜕𝑃𝑧

− 𝜕2𝐻
𝜕𝑦𝜕𝑥 − 𝜕2𝐻

𝜕𝑦𝜕𝑃𝑥
… − 𝜕2𝐻

𝜕𝑦𝜕𝑃𝑧
𝜕2𝐻

𝜕𝑃𝑧𝜕𝑥
𝜕2𝐻

𝜕𝑃𝑧𝜕𝑃𝑥
… 𝜕2𝐻

𝜕𝑃2
𝑧

− 𝜕2𝐻
𝜕𝑧𝜕𝑥 − 𝜕2𝐻

𝜕𝑧𝜕𝑃𝑥
… − 𝜕2𝐻

𝜕𝑧𝜕𝑃𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (6)

The matrix F(s) contains 36 terms, 21 of which are inde-
pendent, due to the symmetry of mixed partial derivatives.
Evaluating the s-derivative of the matrix 𝜎, we obtain the
envelope equation, relating its s-evolution to the potentials
in the Hamiltonian of Eq. (1):

𝑑𝜎
𝑑𝑠 = F(𝑠)𝜎 + 𝜎F(𝑠)𝑇. (7)
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TRANSOPTR solves the 21 independent coupled partial
differential equations represented by Eq. (7), in addition to
tracking energy and time:

𝑑𝐸0
𝑑𝑠 = 𝜕𝐻

𝜕𝑡 (8)

𝑑𝑡0
𝑑𝑠 = −𝜕𝐻

𝜕𝐸 = 𝐸0
𝑃0

= 1
𝛽0𝑐 . (9)

For suitably defined potentials (𝜙,𝐴) and a matrix F(s), a
beam optical element can be incorporated into the code.

Energy Gain From a Potential
To first order in TRANSOPTR, in the presence of a scalar

potential Φ [6]:

𝑐2𝑃Δ𝑃 = (𝐸 − 𝑞Φ)Δ𝐸. (10)

Energy gain in is directly integrated from the potential, in
the case of a field ℰ(𝑠) scaled by a factor 𝑉𝑠:

𝐸(𝑠) = 𝐸0 + 𝑞𝑉𝑠 ∫
𝑙

0
ℰ(𝑠) cos(𝜔𝑡(𝑠) + 𝜙0)𝑑𝑠. (11)

This allows for a straightforward treatment of acceleration,
without resorting to transit time factors. All that is needed is
information on the potential distribution itself. This avoids
use of gap-field parametrizations: the field can simply be
simulated in any Poisson solver, from the gap geometry. As
shown below, it also enables the straightforward treatment
of radiofrequency quadrupole (RFQ) envelopes, necessary
for ISAC-I linac simulations.

RFQ F-Matrix
The two first terms of the Kapchinsky-Teplyakov po-

tential for an RFQ are used to derive the F-matrix of an
RF quadrupole arising from a specified vane geometry
(𝑠, 𝐴01, 𝐴10, 𝑘), shown at the top of Fig. 1 for the ISAC-
RFQ [7]:

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
𝑃 0 0 0 0

−𝐴+ 0 0 0 0 0
0 0 0 1

𝑃 0 0
0 0 −𝐴− 0 0 0
0 0 0 0 𝐵 1

𝛾2𝑃
0 0 0 0 −𝐶 −𝐵

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(12)

𝐴± = 𝑞𝑉0 sin(𝜔𝑡0+𝜙)(𝑘2𝐴10 cos 𝜓±4𝐴01)
4𝛽𝑐 ,

𝐵 = 𝑞𝑉0𝐴10(𝑘 sin 𝜓 sin(𝜔𝑡0+𝜙)+(𝜔/(𝛽𝑐)) cos 𝜓 cos(𝜔𝑡0+𝜙))
2𝛽2𝛾3𝑚𝑐2 ,

𝐶 =𝑞𝑉0(𝜔/(𝛽𝑐))2𝐴10 cos 𝜓(𝑞𝑉0𝐴10)/(𝛽2𝛾3𝑚𝑐2)
4𝛽𝑐 ×

(cos 𝜓 cos2 (𝜔𝑡0 + 𝜙) − 2 sin (𝜔𝑡0 + 𝜙))
4𝛽𝑐 .

and the shorthand 𝑆 = sin(𝜔𝑡0 + 𝜃) and 𝐶 = cos(𝜔𝑡0 + 𝜃)
has been used. The spatial cosine term uses a function
𝜓 = ∫ 𝑘(𝑠)𝑑𝑠. The ISAC-RFQ is now in TRANSOPTR [7].
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Figure 1: ISAC-RFQ vane modulation parameters (top) and
example Opera-2D computed electric field ℰ(𝑠) for DTL
Tank-1.

Axially Symmetric Linac F-Matrix
Originally implemented for use with the TRIUMF elec-

tron linear accelerator (elinac) [6], the following F-matrix
relies upon a smooth function ℰ(𝑠):

F(𝑠) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
𝑃0

0 0 0 0

𝒜(𝑠) 0 0 0 0 0

0 0 0 1
𝑃0

0 0

0 0 𝒜(𝑠) 0 0 0

0 0 0 0 𝛽′

𝛽
1

𝛾2𝑃0

0 0 0 0 ℬ(𝑠) −𝛽′

𝛽

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(13)

with:

𝒜(𝑠) = − 𝑞
2𝛽𝑐(ℰ′(𝑠)𝐶 − ℰ(𝑠)𝑆𝜔𝛽

𝑐 )

ℬ(𝑠) = 𝑞ℰ(𝑠)𝜔𝑆
𝛽2𝑐2 .
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Figure 2: (Top) TRANSOPTR 2 rms envelopes for (x,y,z) dimensions of a 6D ellipsoidal beam centered around a reference
particle undergoing acceleration in the ISAC-I linac. Simulation broken into two segments, starting from offline ion source
(OLIS), through the ILT low energy section, ISAC-I RFQ and terminating at the medium energy section (MEBT). (Bottom)
2 rms envelopes for the same beam, undergoing full acceleration through the ISAC-DTL, after exiting the ISAC-RFQ.

The above parametrization is convenient as it calls upon
ℰ(𝑠) & ℰ′(𝑠), which are the normalized magnitude of the
on-axis electric field and its first derivative, with respect to
the Frenet-Serret arclength coordinate 𝑠.

For the ISAC-DTL, engineering drawings were used to
build a simplified model of the drift tubes in the Poisson
solver Opera-2D, which allowed for the computation of ℰ(𝑠)
for each cavity, with Tank-1 shown in Fig. 1, bottom. These
maps were calibrated with beam to provide a relationship
between the control system tank voltage parameter and the
physical on-axis magnitude of the electric field in the cav-
ities [8]. In addition, quadrupole effective lengths for the
triplets located along the lattice of the machine were ob-
tained from initial field surveys performed during machine
commissioning. The full accelerator can be simulated in
TRANSOPTR and is shown in Fig. 2, for a 20Ne4+ beam.

CONCLUSION
End to end rms envelope tracking in the ISAC accelera-

tor, using TRANSOPTR, provides a unified tool for machine

and tune investigations. Since TRANSOPTR tracks a single
particle, it typically enjoys subsecond execution time for
full envelope computations. Ongoing development aims
to use this model as the physics engine for model-coupled
accelerator tuning, which has the potential to significantly
reduce tuning time, by providing operators with realtime
simulations and optimizations of the machine. This method
further allows for a more elegant treatment of linac energy
changes, doing away with transit time factors. We further
note that, following the works of DeJong [9], based on that
of Sacherer and Lapostolle [10], this envelope model is fully
capable of a native first order space charge computation, as
discussed in [6, 7].
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