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Abstract
Tune determination in numerical simulations is an essen-

tial aspect of nonlinear beam dynamics studies. In particular,
because it allows probing whether a given initial condition is
close to resonance, and it enables assessment of the stability
of the orbit, i.e. whether the motion is regular or chaotic. In
this paper, results of recently developed techniques to obtain
accurate tune computation from numerical simulation data
are presented and discussed in detail.

INTRODUCTION
The evaluation of the tune of an orbit in a nonlinear system

provides essential information on the underlying dynamics.
Indeed, the properties of the tune allow classifying the or-
bit as regular or chaotic, and in the first case whether it is
resonant or not. All these essential features can be extracted
solely from the tune value, provided the approach used en-
sures a high-accuracy. In past years, strong efforts had been
devoted to the development of algorithms for the precise
tune determination, in some cases importing methods from
neighbouring fields, such as celestial mechanics (see [1, 2]
for a review of this approach, and [3] for a general overview).
In other cases, analytical formulae had been derived, which
are based on the Fourier series involved in the tune determi-
nation [4, 5].

More recently, a number of studies have been performed
on the topic of quasiperiodicity of time series, and resulted
in a number of novel approaches that could lead to improve-
ments in the accuracy of the tune estimate [6–10]. These
studies are not well known in the domain of accelerator
physics and in this paper we present how they could be ap-
plied to beam dynamics.

Another point considered here, is the tune determination
in the presence of amplitude modulation of the time series.
In this case, time series cannot be represented anymore as a
sum of complex exponential terms with constant coefficients.
In all methods that are normally used to perform harmonic
analysis of time series it is assumed that the amplitude is
time independent. However, this is not always the case, as
the presence of decoherence and filamentation introduce
a natural amplitude modulation of the turn-by-turn signal
measured. Therefore, in this paper, we will also consider
this special topic, that is normally neglected, and show how
the accuracy of the tune determination can be improved by
means of new approaches.
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TUNE DETERMINATION FOR SIGNALS
OF CONSTANT AMPLITUDE

Theory
The standard methods to determine the tune from time

series with constant amplitude are based on Ref. [1] and on
Refs. [4, 5], which both represent a significant improvement
in terms of tune error if compared with the accuracy provided
by the standard FFT-based method. The latter provides a
tune error that scales as 𝑁−1, with 𝑁 being the length of
the time series, whereas the improved methods are in the
implementation with the Hanning filter, accurate as 𝑁−4,
which represents a huge improvement.

A further accuracy improvement can be obtained by con-
sidering the following approach based on the use of analytic
filters 𝑤𝑛 of the form

𝑤𝑛(𝑡) = exp [− 1
𝑡𝑛(1 − 𝑡)𝑛 ] , 𝑡 ∈]0, 1[ (1)

and set to 0 for 𝑡 outside ]0, 1[. We can define the Birkhoff
average of a function 𝑓 as

𝑊𝐵𝑁(𝑓 )(𝑥) =
𝑁−1
∑
𝑘=1

𝑤1(𝑘/𝑁)
∑𝑁−1

𝑘=1 𝑤1(𝑘/𝑁)
𝑓 (𝑧(𝑘)) , (2)

where 𝑧(𝑘) is a generic time series. It is immediate to gen-
eralise the definition of 𝑊𝐵𝑁(𝑓 ) to the case in which 𝑤𝑛 is
used instead. The main result [9] is that under appropriate
conditions the following holds

∣𝑊𝐵𝑁(𝑓 )(𝑥) − lim
𝑁→∞

1
𝑁

𝑁−1
∑
𝑘=1

𝑓 (𝑧(𝑘))∣ < 𝑐𝑝𝑁−𝑝 (3)

for arbitrary value of 𝑝 ∈ ℕ. This super-convergence of
𝑊𝐵𝑁 to the limit of the average 1/𝑁 ∑𝑁−1

𝑘=1 𝑓 (𝑧(𝑘)) can be
exploited to determine the tune. In fact, if the function 𝑓 is
taken so that 𝑓 (𝑧(𝑘)) = 𝜃𝑘, i.e. the phase of the signal at time
𝑘, then the average represents the average phase advance,
whose limit is exactly the tune. Therefore, Birkhoff averages
can be used to compute the tune with a super-convergent
behaviour. Note that although filters like 𝑤𝑛 had been con-
sidered in [1], they had not used in applications.

Results of Numerical Simulations
The previous results have been applied to the tune compu-

tation of a time series. A complex signal has been built by
putting together normalised values of the beam position and
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divergence, so that the time series used for the numerical
tests has the following form [4, 5]

𝑧(𝑘) = 𝑒2𝜋𝑖𝜈0𝑘 +
4

∑
𝑗=1

𝑒−𝑗𝑒2𝜋𝑖𝜈0𝑗𝑘 , 𝑘 ∈ ℕ, (4)

where 𝜈0 represents the known value of the tune and
𝑧 = 𝑥 − 𝑖𝑝𝑥. The method based on Birkhoff averages has
been compared with those developed in [4, 5] that provide
analytical closed-form formulae for the case of a FFT with
interpolation, and the case in which a Hanning filter is ap-
plied, i.e. the terms of the time series are multiplied by a
factor 2 sin2 𝑘/𝑁, to improve the tune estimate. In Fig. 1
the value of the tune error Δ𝜈 is shown as function of 𝑁 for
various reconstruction methods. The Birkhoff average with
𝑛 = 1 (left) and 𝑛 = 2 (right) are also shown.

Figure 1: Comparison of the tune error Δ𝜈 as a function of
the length of the time series 𝑁 for various methods including
the Birkhoff average with 𝑛 = 1 (left) and 𝑛 = 2 (right).
The improved performance of the method based on Birkhoff
average is clearly visible.

As expected, the method based on simple interpolation of
the FFT and that based on the Hanning filter feature an error
that scales as 𝑁−2 and 𝑁−4, respectively. On the other hand,
the error for the method based on Birkhoff averages scales as
𝑁−7, with an impressive improvement of the accuracy, and
saturates to the double-precision accuracy. No difference is
observed between the two variants based on 𝑤1 or 𝑤2, as
already observed in previous studies [8]. Indeed, it is related
with the machine accuracy and extended precision would
reveal the difference on the two variants of the Birkhoff
averages.

TUNE DETERMINATION FOR SIGNALS
OF VARYING AMPLITUDE

Analytical Methods
Analytical methods can be developed also for the case

of signals with a time-dependent amplitude. However, the
possibility to determine a closed-form expression for the tune
value closely relies on the functional form of the amplitude
variation. In the case of an exponential damping, i.e.

𝑧(𝑘) = 𝑒−𝜆𝑘𝑒2𝜋𝑖𝜈0𝑘 𝜆 ∈ ℝ+ , (5)

it is indeed possible to achieve this goal. In this case, it
can be shown that if the FFT of the time series is evaluated

and its peak corresponds to the index 𝑙, then the tune can be
computed as

𝜈0 = 𝑙
𝑁 + 1

𝜋 arctan ⎛⎜⎜⎜
⎝

𝜉 − sgn(𝜉)√𝜉2 + tan2 𝜋
𝑁

tan 𝜋
𝑁

⎞⎟⎟⎟
⎠

(6)

where

𝜉 = 𝜂 + 1
𝜂 − 1 , 𝜂 = 𝜒+ − 1

𝜒− − 1 , 𝜒± = |𝜙(𝜈𝑙)|2

|𝜙(𝜈𝑙±1)|2
(7)

𝜙(𝜈𝑙) are the FFT coefficients for 𝜈𝑙 = 𝑙/𝑁, and
sgn(𝜉) = 𝜉/|𝜉| if 𝜉 ≠ 0. Note that a formula to compute
the value of 𝜆 can also be found [11]. Similarly to the case
of the time series with constant amplitude, the application
of a filter can be envisaged to improve the accuracy of the
tune determination. If the Hanning filter is used, then a
closed-form formula can be derived [11], which can be used
to determine 𝜈0 and 𝜆.

Hilbert Transform
In the general case, i.e. for a time series of the form

𝑧(𝑘) = 𝐴(𝑘)𝑒2𝜋𝑖𝜈0𝑘 analytical methods are no longer pos-
sible. However, it is possible to use the Hilbert trans-
form [12,13] to evaluate the signal envelope, i.e. reconstruct
𝐴(𝑘), and then normalise the original time series to restore a
situation in which the amplitude is constant over time. The
Hilbert transform of a real function 𝑓 is defined as [13]

ℋ[𝑓 ](𝑥) = 1
𝜋p.v. ∫

+∞

−∞
𝑓 (𝑦)
𝑥 − 𝑦d𝑦 , (8)

where p.v. stands for the Cauchy principal value. Note that
the Hilbert transform can also be defined in terms of the
Fourier transform of the function 𝑓 [13]. The main property
of the Hilbert transform that is crucial for our analysis is
that the function 𝑓 (𝑡) + 𝑖ℋ[𝑓 ](𝑡) is a representation of the
envelope of 𝑓 (𝑡). Therefore, whenever a time series features
a time-dependent amplitude, it can be transformed to a new
time series in which the amplitude is constant, thanks to the
Hilbert transform.

Results of Numerical Simulations
The comparison in terms of error on the tune and damp-

ing factor 𝜆 for the formulae derived for a time series (5)
has been performed by considering the two new formulae
(with or without the Hanning filter) and the best techniques
developed for the case of signals with constant amplitude.
The outcome of this analysis is shown in Fig. 2 in which
the tune error Δ𝜈 (top) and Δ𝜆 (bottom) are shown as a
function of the length of the time series 𝑁.

The difference in performance is clearly visible. The
newly developed methods feature a Δ𝜈 that scales as 𝑁−4 or
𝑁−2 depending on whether the Hanning filter is used or not,
respectively. This equals the optimal result that is obtained
for the case of time series with constant amplitude [4, 5]. It
is worth noting that when the optimal methods for constant-
amplitude time series are applied to amplitude-varying time
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Figure 2: Comparison of Δ𝜈 (top) and the damping error
Δ𝜆 (bottom) as a function of the length of the time series
𝑁 for various analytical methods. The plots differ for the
value of 𝜆, namely 5 × 10−5 (left) and 5 × 10−4(right). The
improvement brought by the new methods is clearly visible.

series, Δ𝜈 increases with 𝑁, which is a non-negligible draw-
back. The usual mitigation measure, consists in applying
the methods developed for constant-amplitude time series
together with a short window (of length 𝑁1 < 𝑁) that is
then shifted along the whole time series (with a further re-
finement obtained by applying the techniques developed
in [14]). In this way, however, Δ𝜈 ∝ 𝑁−𝛽

1 , which is larger
than Δ𝜈 ∝ 𝑁−𝛽, i.e. the error of the optimised methods
that can be applied to the whole time series. Note the scaling
laws of Δ𝜈 are independent on 𝜆.

The behaviour of Δ𝜆 is shown in Fig. 2 (bottom). Ob-
viously, only the new methods allow computing 𝜆, and the
accuracy follows the very same scaling laws of Δ𝜈. A sat-
uration effect is visible, which depends on the value of 𝜆.
This can be explained by noting that any method of recon-
struction is limited by the double-precision accuracy used
in the numerical computations. The smaller the value of 𝜆
the smaller the value of ̄𝑁 at which the machine precision
limit is hit.

The study of the impact of the Hilbert transform has been
carried out by using a time series representing the decoher-
ence due to chromaticity that is described as [15]

𝑧(𝑘) = 𝑒−𝛼(𝑘)2/2𝑒2𝜋𝑖𝜈0𝑘 𝛼(𝑘) = 2𝜎s𝑄′

𝜈s
sin 𝜋𝜈s𝑘 , (9)

where 𝜈s, 𝜎s, 𝑄′ are the synchrotron tune, the rms momen-
tum spread, and the chromaticity, respectively. A typi-
cal example of this behaviour is shown in Fig. 3 (left)
where the time series of Eq. (9) is shown for the case
𝜎s𝑄′ = 1.12 × 10−4 and 𝜈s = 10−4. The decoherence is
clearly visible (light blue), and the use of the Hilbert trans-
form to determine the signal envelope reveals that the nor-
malisation procedure works very well (dark blue).

The comparison of Δ𝜈 for the various methods is then
shown in Fig. 3 (right). Globally, the direct application
of the optimal methods for constant-amplitude time series

Figure 3: Left: time series including decoherence due to
chromatic effects before and after normalisation with the
Hilbert transform. Right: Comparison of the tune error Δ𝜈
as a function of the length of the time series 𝑁 for various an-
alytical methods. The improvement of the proposed method
based on the Hilbert transform is clearly visible.

is hampered by the same shortcomings observed for the
time series of Eq. (5), namely that Δ𝜈 increases with 𝑁.
The application of the optimal methods [4, 5] after having
normalised the original signal restores a scaling of Δ𝜈 as
𝑁−𝛽. It is worth noting that for the case without Hanning
filter, 𝛽 = 2. Therefore, the Hilbert transform fully restores
the performance of the optimal method. However, when the
Hanning filter is applied, 𝛽 = 3. Hence, in this case some
performance loss is observed, as the original performance
of the optimal method, corresponds to 𝛽 = 4.

CONCLUSIONS AND OUTLOOK
The precise determination of the tune of an orbit allows

determining essential properties, such as whether the motion
is quasiperiodic or chaotic, and in this paper a number of
new techniques have been presented and discussed in detail.

The use of Birkhoff averages improves the accuracy of
the tune determination for the case of time series with con-
stant amplitude. This is a feature that would be particularly
appealing to perform high-quality frequency map analysis.
In fact, given the much improved tune error as a function of
the length 𝑁 of the time series, the number of turns required
can be reduced, thus making it possible to probe many more
initial conditions for the same CPU time, which would lead
to a finer probing of the phase-space structure. Clearly, this
increased accuracy is particularly appealing for large circu-
lar accelerators, such as the Future Circular Collider under
study at CERN [16].

In the domain of time series with time-dependent ampli-
tude, novel methods, either based on analytical closed-from
formulae or on the use of the Hilbert transform, have been
proposed and also in this case, the accuracy of the tune de-
termination has been very much increased with respect to
the standard techniques.

Studies of the behaviour of these new techniques in the
case of frequency-modulated time series will be considered
next. Moreover, the impact of noise added to the time series
on the performance of these methods will be also considered.
This is an essential aspect if one would like to promote
the use of these approaches to the experimental domain of
accelerator physics.
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