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Abstract
Noise artifacts can appear in optics measurements data

due to instrumentation imperfections or uncertainties in the
applied analysis methods. A special type of semi-supervised
neural networks, autoencoders, are widely applied to de-
noising tasks in image and signal processing as well as to
generative modeling. Recently, an autoencoder-based ap-
proach has been developed to improve the quality of phase
measurements obtained from harmonic analysis of LHC
turn-by-turn data. We discuss the effect of the noise in light
of optics corrections, present the results achieved on LHC
simulations and demonstrate the potential of the new method
by providing a comparison between autoencoder-based re-
construction and LHC measurement data.

MOTIVATION
The presence of noise enforces acquisition of several turn-

by-turn measurements for each beam in order to obtain sta-
tistically significant computation of the optics functions and
uncertainties. Phase advances retrieved through harmonic
analysis of turn-by-turn data build a basis for the calculation
of other important optics observables [1–4]. Therefore, de-
noising of phase advance measurements can potentially lead
to improvements of overall optics analysis.

Keeping the measurements’ noise as low as possible, as
well as including most relevant optics observables preferably
at all BPMs locations into the correction computation is of
a great importance for optics control. In light of recent de-
velopments on Machine Learning (ML) methods for optics
measurements and corrections [5, 6], further improvements
can be achieved through noise reduction and reconstruction
of missing data points. Concerning ML-based estimation of
quadrupolar gradient errors, reducing the noise in the mea-
surements of optics observables used as input of ML-models
highly improves the prediction accuracy. Training regres-
sion models to predict all quadrupolar errors in the entire
lattice from noisy phase advance data has demonstrated a
strong correlation between the noise and the performance
of the method. We trained and validated such models by ap-
plying different noise factors to the phase advances used as
input features. The model performance, described by Mean
Absolute Error (MAE) of prediction and explained variance
(𝑅2) decreases significantly with increasing noise factor, as
demonstrated in Fig. 1. We also performed a verification
of model accuracy using noise-free data for quadrupolar
error prediction. The results state that the absence of noise
leads to the reduction of relative prediction error for the arc
magnets from 30% to 1%, while for the triplet magnets the
error reduces less significantly, from 16% to 12%.
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Figure 1: The change in the performance of the model trained
for the prediction of arc and triplet magnets depending on
phase advance noise. Mean Absolute Error (MAE) and 𝑅2

are typical figures of merit for the performance of supervised
regression model and are computed on a test data set. The
gray line indicates the currently estimated noise factor for
the LHC measurements.

In the following, we provide a brief introduction to Au-
toencoders, demonstrate how they can be efficiently applied
to mitigate the described limitations and discuss achieved
results and future steps.

DENOISING AUTOENCODER

Autoencoder is a specific type of a neural network that
is trained to reproduce its input in the output layer [7]. The
network consists of two parts: a learned encoder function
ℎ = 𝑓 (𝑥) describing a set of hidden layers h and a decoder
that produces a reconstruction 𝑟 = 𝑔(ℎ). To perform denois-
ing and data reconstruction, the encoder extracts relevant
information from the input by lowering its dimension and
filtering the noise. The original input is then reconstructed
by the decoder. During the training, the encoder learns to
recognize the noise patterns in the input and to keep only
the signal relevant for the reconstruction performed by the
decoder. Supervised Learning approach can be used when
examples of model input and corresponding desired output
are available, such that an algorithm can generalize the prob-
lem from the given data and produce accurate prediction
from unseen input. In order to achieve generalization ability
during the training, predictions are made from the incom-
ing input and are then compared to the true corresponding
output. For denoising autoencoder, this learning process is
described as minimization of a loss function 𝐿(𝑥, 𝑔(𝑓 ( ̃𝑥)))
penalizing 𝑔(𝑓 ( ̃𝑥)), where ̃𝑥 is the input corrupted by noise
and 𝑥 is original input. Since autoencoder is considered
as a special case of a feedforward network, it can utilize
the same techniques for training, e.g. gradient descent and
backpropagation.
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In order to build training samples, we employ the original
simulated and noisy phase advances, as output and input
of each sample respectively. The results presented in this
work are obtained with an autoencoder implemented using
Keras library [8]. It consists of 4 hidden layers and is trained
using mean absolute error as loss function, leaky rectified
linear unit [9] as activation function in the hidden layers and
Adam [10] as optimization algorithm. Figure 2 illustrates
the architecture of the applied autoencoder neural network,
indicating the number of hidden layers and the number of
nodes in each layer. All nodes of each two adjacent layers
are fully connected, the connections between the inner nodes
are omitted in the illustration only for a clear visualization.

… … … … … …
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Figure 2: The architecture of autoencoder network used for
the denoising and reconstruction of simulated noisy phase
advance deviations Δ𝜙, to produce original values Δ𝜙. In-
put and output layers consist of 2048 nodes corresponding
to the total number of BPMs in both beams, horizontal and
vertical planes.

DATA GENERATION
In order to apply this approach to denoising and recon-

struction of phase advances, autoencoder network is trained
using phase advance deviations from the nominal model sim-
ulated with different distributions of realistic magnet errors.
Introducing random magnet errors allows to generate a large
set of training data, consisting of realistic LHC optics cor-
responding to the expected optics errors. In this study, the
simulations are performed using the settings of 𝛽∗ = 40 cm
optics.

The input contains phase advance deviations from the
nominal model simulated at every BPM, given the noise.
This noise of the phase advance measurement is estimated
to be 10−3 × 2𝜋 in a BPM with 𝛽 = 171 m and it is scaled
with the 1/√𝛽 at the rest of locations. This estimation is
generally valid for both beams in horizontal and vertical
planes. In addition, we replace 10% of input values with
zeros in order to simulate the presence of faulty BPMs which
measurements are not available in the optics analysis data.
The corresponding output contains the full set of noise-free
phase advance deviations from design, including the values
at simulated faulty BPMs. In total, 10000 samples including
2048 input features and 2048 output targets in each sample

are generated and divided into training and test sets, 80%
and 20% respectively.

RESULTS
First, we validate the trained autoencoder on a set of 100

LHC simulations, generated independently from training
data using 𝛽∗ = 40 cm optics. The predicted sets of phase
advance deviations are compared to the ground truth sim-
ulations. By this means, both objectives to be achieved by
applying the autoencoder can be verified. The residual error
of prediction at the location of available BPMs is compared
to the simulated noise, quantifying the noise reduction in
the autoencoder-processed data. The reconstruction of sim-
ulated faulty BPMs is verified against the agreement with
original simulated values at these BPMs.
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Figure 3: Comparison between the noise added to original
simulation of phase advance deviations in beam 1, horizontal
plane to the reconstruction error (the difference between
true simulated phase advance deviations and corresponding
predicted values) of autoencoder’s prediction, performed on
100 LHC simulations.

Processing the phase advance data with autoencoder al-
lows to reduce the noise added to simulated phase advances
by a factor of 2 as demonstrated in Fig. 3. The rms error of
prediction w.r.t. to original simulated phase advance devia-
tions obtained from 100 validation samples, for both beams,
horizontal and vertical planes is 5%.
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Figure 4: Example of reconstructing the phase advance de-
viations at the locations of simulated missing BPMs in hori-
zontal plane, beam 1 using autoencoder neural network.

Reconstruction of missing measurements from faulty
BPMs is validated by omitting 10% of values in the input of
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Figure 5: Comparison between LHC measurements and autoencoder’s reconstruction in horizontal and vertical plane for
beam 1 (right) and beam 2 (left). The optics analysis provides phase advances at the locations of well-functioning BPMs
only. Zeroes in the measurements indicate the locations of faulty BPMs where the measurements are not available and are
to be potentially replaced by autoencoder-reconstruction.

the autoencoder, simulating the absence of measurements
from faulty BPMs. An illustrative example of comparison
between autoencoder prediction at the location of discarded
data points and corresponding original true simulated values
is shown in Fig. 4 demonstrating a very good agreement.
The relative error of prediction in the shown example is 8%.

The approach for phase advance reconstruction using the
autoencoder is also tested on measurements data from LHC
commissioning in 2016, for 𝛽∗ = 40 cm. Unlike in simu-
lations, here the true values of missing data points, as well
as noise-free calculations of phase advance deviations are
unknown. Hence, the full set of computed phase advance
deviations from ideal optics, instead of the values at the lo-
cations of faulty BPMs only, is compared to the autoencoder
output in order to assert the reliability of prediction.

Figure 5 demonstrates the comparison between the mea-
sured phase advance deviations and autoencoder-based re-
construction. In total, for both beams and horizontal plane,
the phase deviations in the measurements at the location of
well-functioning BPMs and the corresponding reconstruc-
tion agree to 88%. The good agreement between measure-
ment and prediction, together with the results obtained from
a large number of from simulations, confirm that this ap-
proach can produce reliable reconstruction of phase advance
measurements, reducing the noise.

CONCLUSION
Initially, the application of autoencoder neural network

has been found to be a promising solution for denoising,
improving the quality of phase advance data which are es-
sential for overall optics analysis. A possible future step of
the presented study is to employ the denoised phase advance
data into the computation of 𝛽-function, aiming to reduce
the uncertainty of its calculation from phase. Alternatively,
future work can be related to the application of denoising
autoencoder directly to turn-by-turn data, before performing
harmonic analysis.

The main advantage of applying an autoencoder neural
network is the possibility to combine two different objec-
tives using one ML technique, namely the reconstruction
of missing data and measurements denoising. As shown on
simulations, the noise can be reduced by a factor of 2, as
demonstrated by comparing the simulated realistic noise in
the phase advance measurements against the error of autoen-
coder’s reconstruction. Moreover, an accurate reconstruction
of the full set of phase advances has been demonstrated on
LHC measurements data, promising successful application
of the proposed denoising technique to optics analysis data.

REFERENCES
[1] T. Persson et al., “LHC optics commissioning: A journey

towards 1% optics control”, Phys. Rev. Accel. Beams, vol. 20,

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB068

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03 Beam Diagnostics and Instrumentation

THPAB068

3917

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



p. 061002, 2017.
doi:10.1103/PhysRevAccelBeams.20.061002

[2] A. Langner et al., “Utilizing the N beam position monitor
method for turn-by-turn optics measurements”, Phys. Rev.
Accel. Beams, vol. 19, p. 092803, 2016.
doi:10.1103/PhysRevAccelBeams.19.092803

[3] A. Wegscheider, A. Langner, R. Tomás and A. Franchi, “An-
alytical N beam position monitor method”, Phys. Rev. Accel.
Beams, vol. 20, p. 111002, 2017.
doi:10.1103/PhysRevAccelBeams.20.111002

[4] H. Garcia-Morales et al.,“Phase advance constraint in K-
modulation for 𝛽∗ determination in the LHC”, to be pub-
lished.

[5] E. Fol et al., “Detection of faulty beam position monitors
using unsupervised learning”, Phys. Rev. Accel. Beams, 23,
p. 10280, 2020. doi:10.1103/physrevaccelbeams.23.
102805

[6] E. Fol, R. Tomás, and G. Franchetti, “Supervised learning-
based reconstruction of magnet errors in circular accelera-
tors”, Eur. Phys. J. Plus, vol. 136, p. 365, 2021.
doi:10.1140/epjp/s13360-021-01348-5

[7] P. Vincent and H. Larochelle,“Stacked Denoising Autoen-
coders: Learning Useful Representations in a Deep Network
with a Local Denoising Criterio”, Journal of Machine Learn-
ing Research, vol. 11, pp. 3371–3408, 2010.

[8] F. Chollet et al., Keras, https://github.com/fchollet/
keras

[9] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation
of Rectified Activations in Convolutional Network”, 2015.
arxiv:1505.00853

[10] P. Diederik and J. Kingma, “Adam: A Method for Stochastic
Optimization”, 2014. arxiv:1412.6980

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB068

THPAB068C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3918

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03 Beam Diagnostics and Instrumentation


