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Abstract
In the LHC, most of the optical functions can be ob-

tained from turn-by-turn beam centroid data. However, the
measurement of such observables as 𝛽∗ and the dispersion
function require special dedicated techniques and additional
operational time. In this work, we propose an alternative
approach to estimate these observables using supervised
machine learning, in case the dedicated measurements are
not available but turn-by-turn data are. The performance of
developed estimators is demonstrated on LHC simulations.
Comparison to traditional techniques for the computation of
𝛽-function will be also provided.

MOTIVATION
In order to obtain the normalised dispersion function, sev-

eral beam excitations on- and off-momentum are required.
Considering turn-by-turn motion in the absence of betatron
coupling, the vertical dispersion can be neglected. The nor-
malised horizontal dispersion 𝐷𝑥

√𝛽𝑥
is used as an observable

which does not depend on BPM calibration, as it is calcu-
lated as a ratio between two calibration-dependent quantities,
cancelling the effect of calibration factor [1]. Reconstructing
the normalised dispersion from a single transverse beam ex-
citation, without any momentum shift, can save operational
time by avoiding numerous measurement acquisitions with
on- and off-momentum conditions.

The 𝛽-function at Interaction Points (IPs), also referred
to as 𝛽∗, is typically computed in the LHC using the 𝑘-
modulation technique [2, 3], which also produces accurate
𝛽 measurements at the BPMs next to the IPs of four main
experiments. Control of the beam in the IPs is crucial to
ensure luminosity balance between experiments. Including
𝛽∗ as a constraint in the global correction computation im-
proves the results of existing correction techniques. This
concerns the currently used response matrix approach, as
well as a recently developed ML-based optics correction
technique [4] to be tested in LHC Run III commissioning.

Besides providing additional input to optics correction
algorithms, this approach can be advantageous also for the
analysis of historical data where the measurements of such
observables have not been performed.

INTRODUCTION TO SUPERVISED
LEARNING

In this study, we employ the concept of supervised learn-
ing in order to build linear regression models for the predic-
tion of normalised dispersion and 𝛽-function from the phase
∗ elena.fol@cern.ch

advance deviations from nominal design. To implement
the supervised learning approach, a data set consisting of
correlated input and output variables needs to be provided.
Since the relation between phase advances and the optics
functions to be predicted is known to be linear, a linear re-
gression model, so called Ridge Regression [5] is applied.
This choice allows faster training and ease the model param-
eter tuning in comparison to non-linear complex models,
such as neural networks.

The Ridge regression model minimises the residual sum
of squares between the true targets in the training data, and
the targets predicted by the linear approximation. The tuning
parameter 𝛼 is responsible for the weights’ regularisation -
a special technique to control the weights’ update during the
training. The regression problem is formally described as
the square of the Euclidean norm

min𝑤 || ⃗𝑋𝑤 − ⃗𝑦||22 + 𝛼||𝑤||22, (1)

where 𝑤 is the matrix containing the weights of the regres-
sion model, ⃗𝑋 is the input data vector and ⃗𝑦 the vector of
targets to be predicted by the model. We also use a special
technique to improve the prediction quality on unseen data
called bagging. Bagging is based on the idea of training
several estimators on subsets of available training data and
using the average of predictions made by single estimators
as final prediction of a target value. In this study, optimal
model parameters found by using cross-validation are 10
Ridge estimators combined into one model, each using 80%
of training data and regularisation parameter 𝛼 = 1 × 10−3.

DATA AND MODEL GENERATION
In order to create a data set for the reconstruction of nor-

malised dispersion and 𝛽-function, thousands of MAD-X
simulations for 𝛽∗ = 40 cm optics, introducing different
distributions of quadrupolar gradient errors have been per-
formed. Specifically this optics setting is used in the sim-
ulations since small 𝛽∗ measurements can limit the per-
formance of traditional measurements techniques such as
𝑘-modulation.

The required input features and output targets are extracted
from the generated simulations. From a single simulation,
two different data samples are produced, i.e. employing
either the simulated normalised dispersion deviations from
nominal model in the entire lattice as sample output or 𝛽-
function at the BPMs left and right from IPs 1, 2, 5 and
8. As input, phase advance deviations from the nominal
model are used in both data sets. To provide realistic data,
the phase advances include the noise estimated from LHC
measurements. In total, 80000 simulations are generated,

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB055

MC5: Beam Dynamics and EM Fields

D01 Beam Optics - Lattices, Correction Schemes, Transport

THPAB055

3875

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



0 5000 10000 15000 20000 25000
Longitudinal location [m]

0.2

0.1

0.0

0.1

0.2
D
x/

x
[
m

]

Simulated
Reconstructured

0.2 0.1 0.0 0.1 0.2
Dx/ x [ m ]

0

50

100

150

200
Simulated
Reconstructed
Difference

Figure 1: Reconstruction of horizontal normalised dispersion deviations in beam 1 from noisy phase advance data. The left
plot illustrates the agreement between simulated and reconstructed values in one exemplary simulation, while the histogram
on the right shows statistics obtained from 1000 simulations.

providing two data sets, where each sample consists of 2048
phase advances as input variables, and 32 or 1024 output
targets corresponding to 𝛽-function and normalised disper-
sion reconstruction, respectively. In both cases, the trained
regression models produce a combined reconstruction of op-
tics functions in both beams simultaneously, including either
both planes in the 𝛽-function reconstruction or horizontal
plane only when reconstructing the normalised dispersion.

RECONSTRUCTION OF NORMALISED
DISPERSION

The Ridge regression model is trained on 64 000 samples
and tested with the remaining 16 000 samples generated as
described above. We also use a separate set of 100 validation
simulations in order to obtain statistically significant results
on an independent data set. Figure 1 shows the comparison
between normalised dispersion variation with respect to the
nominal model predicted by the regression model and the
corresponding actual simulated function. We provide a com-
parison based on a single simulation in order to demonstrate
the agreement of the values at different BPM locations, as
well as summarised result of reconstruction obtained from
100 validation simulation. The relative rms prediction error
on the validation set is 7%.

RECONSTRUCTION OF 𝛽-FUNCTION
The current method available for the computation of 𝛽∗,

𝑘-modulation, is based on gradient modulation in the triplet
magnets left and right of the IPs. By measuring the resulting
tune changes, the average 𝛽-functions in the triplets can be
calculated, which are then propagated towards IPs to obtain
the 𝛽∗. This technique includes time consuming quadrupole
current modulation and requires the cleaning of tune mea-
surements [6] before computing the 𝛽-functions. Providing
the estimates of 𝛽-function can shorten the analysis time, by
reducing the steps to be performed if the traditional method
is used.

The result of reconstructing the 𝛽-function at the BPMs
next to the IPs is presented in Fig. 2. The Ridge regression
model utilises 80 000 samples (80% and 20% for training
and test respectively), each consisting of simulated noisy

phase advance deviations in both beams and planes as input
and 𝛽 deviations in horizontal and vertical planes simulated
for both beams at the BPMs left and right next to the IPs
1, 2, 5 and 8 being the output. The validation is then per-
formed on a set of 100 LHC simulations. The resulting
reconstruction error on validation set is 0.9% which is com-
parable to the uncertainty of 𝑘-modulation technique for the
𝛽∗ measurements with 𝛽∗ = 40 cm [2,7].
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Figure 2: Comparison between simulated and reconstructed
𝛽 in both planes and for both beams at the BPMs next to four
main IPs for 100 simulations. RMS reconstruction error is
0.9%.

In order to verify the ability of the linear regression model
to predict the 𝛽-functions around IPs from phase advances
on realistic LHC data, the measurements taken in uncor-
rected machine in 2016 with 𝛽∗ = 40 cm are used [8]. Since
𝑘-modulation measurements are not available in these data
sets, the prediction of ML-model is compared to the val-
ues computed by the N-BPM method [9, 10], where the
𝛽-function is inferred from the phase advances between dif-
ferent BPMs combinations. Both, regression model and
N-BPM method use the phase advances to reconstruct the
𝛽-function. However, the calculation of 𝛽 from phase us-
ing the N-BPM method is known to be less reliable around
IPs. Figure 3 shows the 𝛽-function values at the BPMs next
to the four IPs, left and right, computed for both beams in
horizontal and vertical planes. The agreement between the
measured values computed using the N-BPM method and
the reconstruction predicted by the regression model shows
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Figure 3: Agreement between measured and predicted 𝛽-
function at BPMs left and right from IP1, 2, 5 and 8, includ-
ing the values for both beams, horizontal and vertical planes.
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Figure 4: Comparison between the uncertainties in the com-
putation of 𝛽-function measured in LHC commissioning
in 2016 and rms error of ML-based 𝛽 prediction obtained
from 100 LHC simulations using 𝛽∗ = 40 cm optics.

that the ML-model is capable to make accurate prediction
on unseen operational data.

We also performed an additional verification of the ap-
proach to reconstruct the 𝛽-function using supervised re-
gression models. By training a model on an extended data
set, where the output targets consist of the full set of simu-
lated 𝛽-function at all BPMs, we can compare the ML-based
approach to the traditional method in terms of accuracy. The
optics analysis tools, currently used for optics measurements
at the LHC, also provide statistical error bars of optics func-
tions calculated from the data obtained from several beam
excitations. In Fig. 4, we provide a comparison between
the calculated error bars in the measurement of 𝛽-function
for 𝛽∗ = 40 cm optics and rms error of ML-based recon-
struction obtained from 100 LHC simulations. While the
reconstruction error is identical for the majority of BPMs,
independently from the plane and beam, the measurement
uncertainty calculated using traditional methods can depend
on the location. Moreover, malfunctioning BPMs can also
impact the accuracy of optics computations. Although ML-
based reconstruction is globally less accurate than currently
applied methods, the reconstructed 𝛽 values can be utilised
in order to replace the measurements at the locations where
large error bars are observed, or at the location of faulty
BPMs, where the data are missing.

SUMMARY
The application of linear regression models allows to ob-

tain estimates of the quantities whose computation other-
wise requires additional beam excitation, as in the case of
dispersion function or performing advanced optics analy-
sis techniques as 𝑘-modulation in order to measure 𝛽∗. In
both cases, supervised regression models estimate the target
outputs from the phase advances which are available in any
measurement set through harmonic analysis of turn-by-turn
data [11, 12].

Table 1 summarises the scores achieved by training and
testing the models on 80000 of LHC simulations used to
build the data samples required for the supervised learning.
The lower accuracy of normalised dispersion reconstruction
can be explained by the fact that the regression model needs
to update its weights during the training with respect to a
much larger amount of output targets compared to the re-
construction of 𝛽-function around IPs. While the achieved
scores state that there is no overfitting towards the training
sets, the relative errors of prediction demonstrate that im-
provements are still possible. Hence, further steps of this
study will be focused on boosting the prediction accuracy,
potentially by the means of more sophisticated regression
models.

Table 1: Explained Variance 𝑅2, Mean Absolute Error of
Prediction (MAE) and Residual Error of Prediction Relative
to the Corresponding Simulated True Values, Demonstrating
the Performance of Regression Models Trained to Predict
𝛽𝑥,𝑦 Next to IPs and Normalised Dispersion 𝐷𝑥/√𝛽𝑥

𝜷x,y Dx/√𝜷x

𝑅2
𝑡𝑟𝑎𝑖𝑛/𝑡𝑒𝑠𝑡 0.995/0.996 0.81/0.8

𝑀𝐴𝐸𝑡𝑟𝑎𝑖𝑛/𝑡𝑒𝑠𝑡 4.49 / 4.61 [m] 0.0058 / 0.006 [√m]
𝑟𝑚𝑠𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑟𝑚𝑠𝑡𝑟𝑢𝑒
0.9% 7%

The presented approach demonstrates the reconstruction
of specific observables relevant for the optics analysis and
corrections’ computation, without performing dedicated
measurements of these observables. Thus, it supports offline
optics analysis by providing otherwise missing data and al-
lows to speed up optics measurements and corrections at the
LHC, saving the costly operational time.
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