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Abstract
Radio Frequency (RF) breakdowns are one of the most

prevalent limits in RF cavities for particle accelerators. Dur-
ing a breakdown, field enhancement associated with small
deformations on the cavity surface results in electrical arcs.
Such arcs degrade a passing beam and if they occur fre-
quently, they can cause irreparable damage to the RF cavity
surface. In this paper, we propose a machine learning ap-
proach to predict the occurrence of breakdowns in CERN’s
Compact LInear Collider (CLIC) accelerating structures.
We discuss state-of-the-art algorithms for data exploration
with unsupervised machine learning, breakdown prediction
with supervised machine learning, and result validation
with Explainable-Artificial Intelligence (Explainable AI).
By interpreting the model parameters of various approaches,
we go further in addressing opportunities to elucidate the
physics of a breakdown and improve accelerator reliability
and operation.

INTRODUCTION
The novel RF cavities of CERN’s Compact LInear Col-

lider (CLIC) are designed for high gradient operation at
∼100 MV/m [1]. Even though RF cavities are operated in
vacuum, local field emissions can cause arcs and breakdowns
of the electric field in the cavity which have a negative ef-
fect on the cavity surface material. The frequency of these
arcs, described by the breakdown rate, is the main limitation
to increase the electric field in an RF cavity during con-
ditioning and operation. While historically RF structures
have been conditioned in a manual way by machine oper-
ators, an automated conditioning algorithm is in place at
the CLIC test stand to gradually increase the field gradient
while maintaining a pre-defined target breakdown rate [2].
These conditioning efforts set the limit to the gradient due
to field emission, caused by the geometrical defects of the
surfaces and the RF power flow, to reduce the likelihood of
a breakdown [3, 4]. Given the limited understanding of the
origin and evolution of RF breakdowns, current optimiza-
tion algorithms aim for a progressive recovery of operating
conditions by a temporary limitation of the RF power af-
ter a breakdown, but do not avoid breakdowns in the first
place. Recently, data-driven machine learning algorithms
have been deployed successfully for incorporating sequential
dynamics [5, 6] using the large amount of experimental data
available. Ongoing efforts already try to predict breakdowns
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in the RF power source output of CERN’s LINAC 4 [7], or
to classify superconducting RF faults at Jefferson Labora-
tory [8].

This paper gives an overview of several data-driven meth-
ods for RF breakdown analysis, specifically suited to the
properties of the measurement data of the CLIC XBOX-2
test stand at CERN. The paper provides an introduction, com-
parison, and hands-on experience of existing data-driven
modeling approaches to non-machine learning experts. It
provides RF physicists and engineers with machine learn-
ing based tools, which allow to gain insights in observing
abnormal behaviours. Finally, first results of these methods
applied to the CLIC XBOX-2 test stand data are presented.

The paper is structured as follows. First, the properties
of the CLIC XBOX-2 test stand and its historical data are
described. Consecutively, a broad overview of existing ma-
chine learning algorithms, suitable for breakdown prediction
in the test stand, is given. Finally, their strengths and the
limitations are discussed, first results are presented and an
outlook is given.

TEST STAND SETUP
The CERN XBOX-2 test stand is part of the CLIC e+e-

collider research program for high gradient acceleration in
high gradient structures. It is one of three high power test
stands at CERN and its primary objective is to study the
RF breakdown phenomenon. A low level radio frequency
generator creates a 1.5 µs long, 12 GHz phase-modulated
pulse. This pulse is amplified by a klystron and a pulse com-
pressor and is then transferred through a copper wave guide
to the RF cavity [9]. A diagram of the high-power portion of
the test stand layout is provided in Fig. 1. The RF cavity is
represented as Device Under Test (DUT). The signals from
the upstream and downstream Faraday cups, which measure
the dark current in the structure, are symbolized by the blue
arrows labelled DC UP and DC DOWN.

METHODOLOGIES
In order to give a hands-on overview, in this paper, the

choice of an algorithm is governed by the chronological
order of the data processing, i.e. transformation, exploration,
modeling, and explanation of RF cavity specific data.

Existing open-source libraries are used instead of hand-
crafted methods in all processing steps, because the engi-
neering and the maintenance of customized methods is time
consuming. For the labeled measurement data from the
XBOX-2 test stand, dedicated toolboxes are used for feature
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Figure 1: Schematic layout of CERN’s Xbox-2 test stand.
The red and green arrows show the reflected and forward
RF signals, respectively, which are sampled via directional
couplers.

calculation [10], time series classification [11], and interpre-
tation of model predictions [12].

Transformation
The sensor data from the XBOX-2 high power tests is

divided into so-called trend data and event data. While the
trend data contains single scalar features (e.g. temperatures),
the event data contains time series signals, generally sampled
with a frequency of 1.6 GHz. In total there are 90 GB of data
available from a period of six months of XBOX-2 operation
in 2018. These data do not only contain runs in which the
operational setting was stable, but also commissioning data
with variable operational settings. Thus, it is crucial to
initially clean the data, create fast queries, memory efficient
storage and file formats with diverse usability. Figure 2
shows the condition summary of the data, where the runs
with stable operational settings are highlighted in yellow and
the cumulative number of breakdowns is shown in red. The
plot further shows the input power in blue, and the pulse
width of the input signal in green.

Figure 2: Condition summary of available data. The yellow
area represents the runs during which the operational settings
were kept stable.

A breakdown results in a burst of current in the cavity,
which can be detected by the Faraday cups next to the struc-
ture. Therefore, for each event data signal, a label healthy
(𝑦 = 1) and breakdown (𝑦 = 0) is assigned by the XBOX-2
experts by setting a threshold on the DC (Faraday cup) sig-
nals and the reflected signals. However, as the DC signals
are the most reliable filter for structure breakdowns, the RF

signals accounting for the reflected power in the structures
are not considered for breakdown prediction. Specifically,
this means a signal is considered a breakdown, if one of the
DC time series signals goes below -0.05 A. In addition, a
label is considered a so-called follow-up breakdown, if there
has already been a breakdown within less than a minute
from its occurrence. After filtering out the test stand com-
missioning data, where most of the breakdowns occurred,
124,448 healthy events and 479 breakdown events, out of
which 250 are follow-up breakdowns, remained for further
analysis. This class imbalance is tackled by only taking a
sub-set of healthy signals and by assigning class weights to
the breakdown events during optimization of the algorithm
and during computation of the performance measure.

Merging and synchronizing the trend data with the event
data is a critical data transformation step. Due to its high
sampling frequency, an event data signal with up to 3200
sample points is stored every minute. Exceptions are break-
down events, where the prior two event data signals are
stored each time a pulse is injected into the RF cavity. The
scalar values of the trend data take up much less space, and
are therefore stored every second. During merging of event
data and trend data, causality is ensured by always taking
the closest information in the past, not in the future.

Exploration

During the exploration phase the goal is to get a quick ini-
tial understanding of the data and to validate the transforma-
tion step, i.e. if the preceding data cleaning was successful.
If there are still outlier signals, which are fundamentally dif-
ferent from the other signals, they have to be understood and,
if applicable, neglected. Ideally, a 2D-representation should
be found for each event in the high dimensional data, without
losing any information due to the dimension reduction. This
allows to see correlations and clusters within the representa-
tions in one glance. Several unsupervised machine learning
methods aim to determine low-dimensional representations
from the high dimensional data, including but not limited to
principle component analysis [13], stochastic neighbor em-
beddings [14], and representation learning methods based
on neural networks [14–16].

An example is shown in Fig. 3, where the XBOX-2 trend
data is transformed into a two dimensional space with 2D-
tSNE [14]. 2D-tSNE transforms pairs of data points to joint
probabilities, where close points have high probabilities and
points which are far apart have low probabilities. Conse-
quently, the Kullback-Leibler divergence within the joint
probabilities of the low-dimensional representations and the
high-dimensional data is minimized iteratively. While the
axes lose their physical meaning during the dimension reduc-
tion, one can clearly see clusters of breakdowns and healthy
signals in the left plot and the nine different stable runs in
the right plot of Fig. 3. Neither the information of the label,
nor the information of the runs were given to the algorithm
during training.
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Figure 3: 2D-tSNE of XBOX-2 trend data during stable
operation. The algorithm was able to distinguish between
healthy and breakdown signals (left) and between stable runs
(right). No information about the labels was given to the
algorithm.

Modeling
We propose two supervised machine learning stages. First,

the behaviour of the trend data over time is investigated. This
means that a window, covering a certain time-span of data,
is moved over the data-set. For each window a prediction
is made if a breakdown will occur in a certain time period.
In this step, no shuffling of time series data is allowed due
to the sequential dependency. Recurrent neural networks,
like long short-term memory networks [17], are especially
suited to process this temporally dynamic behavior due to
their recurrent neuron connections. The model is trained
with several rounds of leave-one-out cross-validation. One
round of cross-validation involves splitting the data-set into
a training, validation and test set, based on the given runs.
This process is repeated until each run was used as training,
validation and test set. In a second stage, it is assumed that
only the signals before a breakdown are essential to predict
the breakdown. Therefore, the signals from the event data
are taken and treated independently with their own label
breakdown in the next pulse. This has the advantage that
convolutional neural networks can be used to classify the
time-series signals [18]. Additionally, the data-set is shuffled,
and the signals are randomly split into training, validation,
and test sets.

Explanation
To increase the reliability of a system, understanding why

the prediction was made, i.e. looking for a precursor, is often
more important than the prediction itself. Especially when
designing upgrades of existing systems, a deep understand-
ing of the root cause of the failures can be an invaluable asset.
As data-driven models are often black-boxes, explainable-AI
does not only help the user to better interpret the behaviours
of the models, but it also helps to build trust in the prediction,
to validate the results, and to find possible errors within the
earlier data processing steps. One can either explore each
prediction separately to gain trust in a prediction (instance
wise explanation) [19–22], or investigate all predictions to
gain trust in a model (population wise explanation) [23].
Both approaches are applicable for explaining predictions
of RF cavity breakdowns.

RESULTS & CONCLUSION
Table 1 shows the results of the trained supervised models.

The balanced accuracy is used for taking into account the
strong class imbalance. It is calculated by averaging the
fraction of correctly categorization breakdowns and healthy
signals.

Table 1: Balanced Accuracy of Classifying and Predicting
Breakdowns With XBOX-2 Data. The Separation Indicates
Different Results on Breakdowns / Follow-up Breakdowns

Classification
of Breakdowns

Prediction
of Breakdowns

Trend Data 100% 91%

Event Data 100% 65% / 98%

The classification step is required for the validation of the
algorithms applied on the trend and event data. The balanced
accuracy of 100% for trend and event data in the classifica-
tion shows the successful validation of the algorithms.

The models achieved a balanced accuracy of 91% for
predicting breakdowns in the next pulse using trend data.
Here, explainable-AI showed that the models made deci-
sions mainly by using the vacuum signals. After further
investigation, it was found that a rise in the vacuum pressure
mostly occurred just before a breakdown and not only after
a breakdown, as generally assumed. This rise in vacuum
pressure might be due to small breakdowns happening just
before a major breakdown. Further experiments in the test
stand are ongoing to validate this result and exclude any
artefacts due to signal timing in the experimental setup.

By using the time-series signals of the event data, a bal-
anced accuracy of 65% was achieved for predicting break-
downs, and 98% for predicting follow-up breakdowns. Here,
explainable-AI indicates precursors in multiple ways, point-
ing to the most important part of each measurement, or
indicating the three most similar events present in the rest
of the data set.

Using this method, an additional precursor has been iden-
tified. Faraday cup signals with a small spike, which occurs
relatively late in the signal but does not reach the breakdown
threshold, often leads to consecutive breakdowns in the next
pulse. Following further validations of these results, an oper-
ational tool for breakdown reduction based on the described
machine learning methods will be developed.
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