DESIGN OF THE X-RAY BEAM SIZE MONITOR FOR THE ADVANCED PHOTON SOURCE UPGRADE*

K. P. Wootton[†], F. K. Anthony, K. Belcher, J. S. Budz, J. Carwardine, W. Cheng, S. Chitra, G. Decker, S. Izzo, S.-H. Lee, J. Lenner, Z. Liu, P. McNamara, H. V. Nguyen, F. Rafael, C. Roehrig, J. Runchey, N. S. Sereno, G. Shen, J. Stevens, B. X. Yang Argonne National Laboratory, Lemont, IL 60439, USA

Abstract

author(s), title of the work, publisher, and DOI

of this work must maintain attribution to the

Any distribution

terms of the CC BY 3.0 licence (© 2021).

under the

used

þ

work may

A beam size monitor provides an intuitive display of the status of the beam profile and motion in an accelerator. In the present work, we outline the design of the X-ray electron beam size monitor for the Advanced Photon Source Upgrade. Components and anticipated performance characteristics of the beam size monitor are outlined.

INTRODUCTION

The electron storage ring for the Advanced Photon Source Upgrade (APS-U) is designed to operate with transverse emittances on the order of 42 pm [1, 2]. The high average brightness X-ray beam presents a number of challenges for measurement and optimisation. In order to quantify the horizontal and vertical emittances, X-ray synchrotron radiation beam size monitors are planned for APS-U [3]. The beamline is illustrated in Fig. 1.

In the present work, we outline the design of the APS-U storage ring electron beam size monitor (BSM) beamline. Performance requirements of the beamline are outlined. The operating principles of the proposed instruments are summarised. Implementation of the beamline subsystems is outlined.

PERFORMANCE REQUIREMENTS

The BSM beamline is a hard X-ray beamline designed to measure the size of the electron beam in the APS-U storage ring. It is specifically optimised to determine the horizontal and vertical emittances of the beam. Functional requirements of emittance measurements are outlined in [1].

The beamline layout and requirements are functionally similar to the DL1A_5 emittance measurement beamlines of the European Synchrotron Radiation Facility Extremely Brilliant Source [4], and the diagnostics beamline of the High Energy Photon Source (HEPS) [5].

The BSM beamline is planned to be used to confirm delivery of the horizontal emittance Key Performance Parameter (KPP) of the APS-U project. During APS-U user operations, the beamline will be used for real-time reporting of the electron beam dimensions.

Physics requirements of the beamline motivate using an AM.1 bending magnet as the source point of bending magnet radiation, at a point in the storage ring lattice where the beam

kwootton@anl.gov

MOPAB303

956

size is dominated by the emittance, and the horizontal dispersion is minimised. Table 1 shows the anticipated electron beam source properties. KPP performance requirements are indicated for comparison. Beam sizes corresponding to the KPPs are calculated for a horizontal emittance of 130 pm rad [1].

Table 1: Electron Beam Source Properties of the APS-U BSM Beamline Instruments, with the APS-U Storage Ring Operated in Different Modes [6]

Branch	BL1	BL2	BL3	BL4	-
Instr.	XBPM	Rel.(x)	Abs.	Rel.(y)	_
Prop.	_	_	_	_	Units
Angle	-0.50	-1.10	-1.70	-2.30	mrad
β_x	1.69	1.65	1.62	1.58	m
β_{v}	19.8	19.8	19.9	19.9	m
η_x	0.233	0.242	0.263	0.295	mm
Timing mode:					
$\varepsilon_x = 31.9 \text{ pm rad}, \varepsilon_y = 31.7 \text{ pm rad}, \Delta E/E = 0.156 \%$					
σ_{ex}	7.4	7.4	7.3	7.2	μm
σ_{ey}	25.1	25.1	25.1	25.1	μm
Brightness mode:					
$\varepsilon_x = 42.0 \text{ pm rad}, \ \varepsilon_y = 4.2 \text{ pm rad}, \ \Delta E/E = 0.135 \%$					
σ_{ex}	8.5	8.4	8.3	8.3	μm
σ_{ey}	9.1	9.1	9.1	9.1	μm
KPP requirements:					
$\varepsilon_x = 130 \mathrm{pm}\mathrm{rad}, \Delta E/E = 0.135 \%$					
σ_{ex}	15.0	14.9	14.7	14.6	μm

The principal physics requirement of the absolute beam size monitor is that the resolution of the instrument (σ_r) not increase the emittance measured by the beam size (σ_{e}) by more than 10 %. Adding in quadrature, $\sqrt{\sigma_e^2 + \sigma_r^2} < 1.1\sigma_e$, which implies an instrument resolution of $\sim 3 \,\mu m$ [1]. This represents a challenging spatial resolution requirement. A feature of this beamline is the inclusion of a monochromator (and higher harmonic rejector), which are seldom included in emittance diagnostic beamlines [7,8].

INSTRUMENTS

The principal scientific purpose of the beamline is measurement of the electron beam horizontal and vertical dimensions, both during accelerator commissioning and APS-U operations. The BSM beamline will provide three beam

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Figure 1: Elevation view of APS-U beam size monitor beamline. Principal beamline components are annotated. The longitudinal coordinate is metres from the centre of the insertion device straight. The bending magnet photon source point is at 3.83 m. The extent of the new BSM beamline enclosure is outlined in red.

size diagnostic instruments: an absolute beam size monitor, and two relative beam size monitors (one for each of the horizontal and vertical planes).

The beamline employs four branch lines, separated horizontally in angle in 0.6 mrad steps. The branch lines are:

- 1. X-ray beam position monitors (XBPM),
- 2. Horizontal relative beam size monitor,
- 3. Absolute beam size monitor,
- 4. Vertical relative beam size monitor.

The four branch lines are defined by the pinhole aperture holder (PAH). This is illustrated in Fig. 2.

Figure 2: PAH and apertures. (a) Overview of apertures in PAH. (i) XBPM1 electrodes (in blue). (ii) BL1 (beamdefining aperture for XBPM2). (iii) BL2. (iv) BL3. (v) BL4. (b) Enlarged image of BL2 slit defining horizontal relative beam size monitor. (c) Enlarged image of BL3 apertures defining absolute beam size monitor. (d) Enlarged image of BL4 apertures defining vertical relative beam size monitor.

X-ray Beam Position Monitors

XBPMs are used in order to maintain alignment of the photon beam along the beamline. Two monitors are employed inline, for to correct electron beam position and gross angle. In the beamline front end, XBPM1 has two photocathodes (one above, and one below the orbit plane), to observe beam motion in the vertical plane only. This is warranted since it is observing the fan of bending magnet radiation. A pinhole aperture passing XBPM1 is used to define the photon beam for XBPM2.

In the beamline enclosure, XBPM2 is used to observe beam motion in the horizontal and vertical planes. The white beam bending magnet radiation is incident upon an Yttrium Aluminum Garnet (YAG) scintillator. The scintillation light is split between two optical detectors: a digital camera (for observation at very low electron beam currents), and a diodebased quadrant detector for routine operation.

Using these two XBPMs, the electron beam in the APS-U storage ring can be steered to maintain stable performance of the BSM beamline.

Absolute Beam Size Monitor

The absolute beam size monitor is a hard X-ray (12 keV) pinhole camera. The principal pinhole aperture is square in profile, with an optimised size of $32 \times 32 \,\mu\text{m}$ in a 100 μm thickness tungsten foil [6]. In addition to the principal pinhole aperture, other diffraction features are used to provide instrument resolution calibrations.

Both the in-vacuum monochromator and higher harmonic rejector use a Si(111) channel-cut crystal with a vertical 12.7 mm offset between the entrance and exit height of the X-ray beams. The X-ray pinhole camera of the beamline provides a magnification of 3.8 from the electron beam source. The X-ray beam incident upon a YAG is imaged by an optical microscope (magnification \sim 2), and the image read out by a digital camera.

An in-vacuum knife edge on a motorised translation stage is utilised as a spatial calibration target, immediately upstream of the monochromator.

Relative Beam Size Monitors

Two relative beam size monitor instruments will be provided: one in each of the horizontal and vertical planes [9]. The principal purpose of these instruments is to provide on-

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

12th Int. Particle Acc. Conf. ISBN: 978-3-95450-214-1

and DOI

Any distribution

CC BY 3.0 licence (© 2021).

be used under the terms of the

for a ratchet wall shielding configuration.

Detectors and Controls

straight section.

Location, z (m)

10.15

10.40

31.20

31.62

31.91

32.29

32.43

32.56

33.04

Safety Interlocks

tem (EPICS).

Beamline

shielding in the beam direction is significantly thicker than

Approximate locations of major optical components are

summarised in Table 2 below. Component locations are

given with respect to the centre of the insertion device

Table 2: Principal Optical Component Locations along

Component

First Fixed Mask

Pinhole Aperture Holder

Combined XBPM2-Slits-I0 monitor Knife edge calibration target

Monochromator

Be Window

Harmonic Rejector

Slits

X-ray Camera

Beamline control and data acquisition will be performed

For both personnel safety and machine protection, safety

SUMMARY

In the present work, we have summarised design choices

for the X-ray BSM beamline instruments for APS-U. Mul-

tiple instruments are provided in a compact arrangement,

by separating them horizontally in angle. Absolute and rel-

ative BSMs will be used to characterize the beam during

ACKNOWLEDGEMENTS

Argonne, LLC, Operator of Argonne National Laboratory

("Argonne"). Argonne, a U.S. Department of Energy Of-

fice of Science Laboratory, is operated under Contract No.

DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive,

irrevocable worldwide license in said article to reproduce,

prepare derivative works, distribute copies to the public, and

perform publicly and display publicly, by or on behalf of

the Government. The Department of Energy will provide

public access to these results of federally sponsored research

in accordance with the DOE Public Access Plan. http://

energy.gov/downloads/doe-public-access-plan

The submitted manuscript has been created by UChicago

interlocks are required for the beamline.

commissioning and user operations.

using the Experimental Physics and Industrial Control Sys-

Figure 3: Schematic view of horizontal relative beam size monitor components [6].

The relative beam size monitors are anticipated to provide beam size measurement in two modes.

Intensity Mode The intensity mode of operation is used for relative beam size measurements at up to ~ 10 k samples s⁻¹, significantly faster than imaging detectors of the absolute beam size monitor. Illustrated in Fig. 3, the electron beam source is co-aligned with the imaging slits and the detector slits. The incoming intensity is detected with a diode detector at (I0). Subsequently, the X-ray beam passing the detector slit is monochromated and measured using the flux detector (I). As the beam dimension oscillates, the flux passing the second slit changes. This could be utilised for online accelerator optimisation using machine learning [10].

Scanning Mode Additionally, the relative beam size monitor can be utilised for slow (<0.01 Hz) absolute beam size measurements. One-dimensional profiles of the electron beam image can be measured by laterally scanning the position of the detector slits through the X-ray beam. The intensity at each position is measured using the flux detector (I). This may be beneficial during early beamline commissioning, for low stored beam currents.

BEAMLINE COMPONENTS

Mechanical and Vacuum

Mechanical and vacuum components have been engineered according to standard Advanced Photon Source beamline requirements [11].

Beamline Enclosure

The enclosure is a lead-lined bending magnet enclosure for white beam bending magnet radiation [12]. Unlike many beamlines at storage ring light sources, a unique feature of this beamline geometry is the length of the penetration through the circular storage ring shielding wall (~8 m length). While challenging for component layouts, the thickness of

() ()

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

REFERENCES

- T. E. Fornek, "Advanced Photon Source Upgrade Project Final Design Report", Argonne National Laboratory, Lemont, IL, USA, Rep. APSU-2.01-RPT-003, May 2019. doi:10. 2172/1543138
- [2] M. Borland, T. G. Berenc, R. R. Lindberg, V. Sajaev, and Y. P. Sun, "Lower Emittance Lattice for the Advanced Photon Source Upgrade Using Reverse Bending Magnets", in *Proc. North American Particle Accelerator Conf. (NAPAC'16)*, Chicago, IL, USA, Oct. 2016, pp. 877–880. doi:10.18429/ JACoW-NAPAC2016-WEP0B01
- [3] B. X. Yang, S. H. Lee, J. W. Morgan, and H. Shang, "High-Energy X-Ray Pinhole Camera for High-Resolution Electron Beam Size Measurements", in *Proc. 5th Int. Beam Instrumentation Conf. (IBIC'16)*, Barcelona, Spain, Sep. 2016, pp. 504–507. doi:10.18429/JACoW-IBIC2016-TUPG66
- [4] L. Torino *et al.*, "Overview on the Diagnostics for EBS-ESRF", in *Proc. 8th Int. Beam Instrumentation Conf.* (*IBIC'19*), Malmö, Sweden, Sep. 2019, pp. 9–13. doi:10. 18429/JACOW-IBIC2019-MOA003
- [5] J. H. Yue *et al.*, "Consideration and Design of HEPS Beam Instrumentation", presented at the 9th Int. Beam Instrumentation Conf. (IBIC'20), Santos, Brazil, Sep. 2020, paper THPP31.
- [6] B. X. Yang and S. H. Lee, private communication, May 2021.
- [7] L. Bobb and G. Rehm, "Spatial Resolution of an Xray Pinhole Camera using a Multi-layer Monochromator",

in *Proc. 8th Int. Beam Instrumentation Conf. (IBIC'19)*, Malmö, Sweden, Sep. 2019, pp. 417–419. doi:10.18429/ JACoW-IBIC2019-TUPP038

- [8] N. Samadi, L. D. Chapman, L. O. Dallin, and X. Shi, "Source Size and Emittance Measurements for Low-Emittance Light Sources", presented at the 9th Int. Beam Instrumentation Conf. (IBIC'20), Santos, Brazil, Sep. 2020, paper THAO03.
- [9] B. X. Yang and S. H. Lee, "Planned x-ray diffraction diagnostics for APS Upgrade emittance measurements", presented at *Topical Workshop on Emittance Measurements for Light Sources and FELs*, Barcelona, Spain, Jan. 2018, unpublished.
- [10] S. C. Leemann *et al.*, "Demonstration of Machine Learning-Based Model-Independent Stabilization of Source Properties in Synchrotron Light Sources", *Phys. Rev. Lett.*, vol. 123, p. 194801, Nov. 2019. doi:10.1103/PhysRevLett.123. 194801
- [11] P. Fernandez and S. Davey, "Guidelines for Beamline and Front-End Radiation Shielding Design at the Advanced Photon Source", Argonne National Laboratory, Lemont, IL, USA, Rep. ANL/APS/TB-44, Sep. 2014. doi:10.2172/1177556
- [12] K. P. Wootton, W. X. Cheng, G. Decker, S. H. Lee, and B. X. Yang, "X-Ray Beam Size Monitor Enclosure for the Advanced Photon Source Upgrade", in *Proc. 9th Int. Beam Instrumentation Conf. (IBIC'20)*, Santos, Brazil, Sep. 2020, paper TUPP05, pp. 34–36. doi:10.18429/ JAC0W-IBIC2020-TUPP05