CHARACTERIZATION OF THE FULL TRANSVERSE PHASE SPACE OF ELECTRON BUNCHES AT ARES

S. Jaster-Merz*1, R. W. Assmann², R. Brinkmann, F. Burkart, H. Dinter, F. Mayet, W. Kuropka, T. Vinatier, Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
${ }^{1}$ also at University of Hamburg, 22761 Hamburg, Germany
${ }^{2}$ also at Laboratori Nazionali di Frascati (INFN/LNF), 00044 Frascati, Italy

Abstract

The ARES linear accelerator at the SINBAD facility (DESY) is dedicated to perform accelerator R\&D studies with sub-fs short electron bunches to test novel acceleration techniques and diagnostics devices. Currently, the commissioning of the linac is ongoing and first experiments are being performed. For this, the knowledge of the full phase space of the particle beams is of high interest to, for example, optimize the accelerator performance and identify possible errors in the beam line. Tomographic methods can be used to gain insight into the full 4D transverse phase space and its correlations. Here, simulation results and first experimental preparations of a 4D transverse phase-space tomography of electron bunches at ARES are presented and discussed.

INTRODUCTION

The ARES (Accelerator Research Experiment at SINBAD) linear electron accelerator [1] is hosted at the SINBAD (Short Innovative Bunches and Accelerators at DESY) facility [2] at DESY and is dedicated to perform accelerator R\&D studies. It aims to deliver well-characterized and reliable bunches with sub-fs duration, up to 155 MeV energy and charges in the pC-range. Due to their short durations, such bunches are well suited, for example, to study the injection into novel high-gradient acceleration structures [36] or to test and develop novel diagnostics methods and devices [7, 8]. Furthermore, ARES is an interesting candidate for autonomous accelerator studies [9]. To improve the performance of such applications and better understand the accelerator itself, it is advantageous to have a full and detailed knowledge of the beam properties.

To meet this demand, dedicated beam diagnostics sections in the low-energy (below $6 \mathrm{MeV} / \mathrm{c}$) gun region and highenergy part of ARES have been foreseen and are shown in Fig. 1. The final components are installed at the time of writing and include two PolariX transverse deflecting structures $[10,11]$. These structures will be operational in the beginning of 2022 and will enable the characterization of the longitudinal profile of the ultra-short bunches [12, 13] aimed to be produced at ARES.

To gain even deeper insight into the phase space of the bunches, a novel tomographic beam diagnostics method is being developed to reconstruct the 5D phase space of the bunches. This includes the measurement of the full 4D transverse phase space distribution as well as its longitudi-

[^0]nal profile and correlations. The latter will be accessible thanks to the variable streaking angle of the PolariX transverse deflecting structures. Since, however, these structures are not yet available for use at ARES, first studies investigating solely the transverse phase space were performed. The transverse phase space can be characterized using 4D phase-space tomography [14]. Here, the application of this method to the ARES linac, measurement preparations and simulation results are presented and discussed.

TRANSVERSE PHASE-SPACE TOMOGRAPHY AT ARES

The 4D transverse phase space of a bunch can be measured using phase-space tomography [14]. This tomographic method is based on rotating the horizontal $\left(x-x^{\prime}\right)$ and vertical $\left(y-y^{\prime}\right)$ phase spaces by changing the phase advance $\mu_{x, y}(s)=\int_{0}^{s} \frac{1}{\beta_{x, y}(s)} d s$. Here, x, y and x^{\prime}, y^{\prime} are, respectively, the horizontal and vertical particle position and divergence, while $\beta_{x, y}$ is the beta function, which together with $\alpha_{x, y}$ and the emittance ϵ describe the statistical parameters of a beam. The rotation of the phase spaces results in different $x-y$ projections, which are recorded at a fixed location by, for example, a screen. From these projections the phase space can be reconstructed using tomographic methods. To access the full 4D phase space, the phase advance in one plane is kept constant while changing it in the other plane. This procedure is repeated until a sufficiently high range of phase advances is covered for both planes. The method of full 4D transverse phase space tomography was originally developed in [14] and was first experimentally demonstrated in [15].

At ARES, the 4D phase-space tomography was performed using the high-energy matching region. This section includes four quadrupoles for phase advance matching as well as screen stations at the entrance and end. A sketch of this part of the beam line is shown in Fig. 2. To set up the ARES beam line for measurements, the beam was first centered in all the used magnets as well as the upstream accelerating structures using the available steerers. To prepare for the phase-space tomography, knowledge of the beam parameters is needed to match the beam line accordingly. Of special interest are the Courant-Snyder parameters α and β in both transverse planes, which were measured by performing a quadrupole scan upstream of the matching region. The results of this measurement are listed in Table 1 together with other relevant parameters. The quadrupoles were matched using ocelot [16] simulations to achieve the desired phase

Figure 1: Current layout of the ARES beam line.

Table 1: ARES Beam Parameters for the 4D Tomography

Parameter	Unit	Value
Momentum	$\mathrm{MeV} / \mathrm{c}$	155.54 ± 0.01
Momentum spread (FWHM)	$\mathrm{MeV} / \mathrm{c}$	0.1
Charge	pC	0.28 ± 0.01
Normalized emittance x	$\mu \mathrm{~m}$	1.06 ± 0.01
Normalized emittance y	$\mu \mathrm{~m}$	0.425 ± 0.008
β_{x} (at screen 1)	m	6.61 ± 0.15
β_{y} (at screen 1)	m	17.83 ± 0.42
α_{x} (at screen 1)		-1.31 ± 0.05
α_{y} (at screen 1)		-3.06 ± 0.1

advance in each plane (between 180° and 360°). In the following, a specific combination of phase advances in the horizontal and vertical plane will be referred to as a scan point. An example of the evolution of the phase advances and beta functions along the beam line for a subset of scan points is shown in Fig. 3. In total, 20 projections per transverse plane were used. This corresponds to a total of 400 scan points.

Two datasets for the 4D tomography were collected at ARES using a partially automated script. For one dataset the quadrupole strengths for each scan point were set without cycling the magnets in between scan points. For the second dataset the quadrupole magnets were cycled whenever the ramping direction for one of the quadrupoles had to be changed. The RF amplitudes of the gun and the two accelerating structures were monitored during all measurements to ensure a stable beam. In addition, reference images of the beam were recorded at the beginning and end of each measurement at screen 1. Finally, for each scan point the camera gain was adjusted and the beam was re-centered on the measurement screen 2 to compensate for any remaining misalignments in the beam line. In total, this data taking procedure took 6 hours for the not-cycled and 31 hours for the cycled case.

In addition to the experimental data, simulation studies were performed based on the measured beam parameters and matched quadrupole strengths. A simulated dataset was obtained using ocelot. A pixel size of $11 \mu \mathrm{~m} \times 11 \mu \mathrm{~m}$ was used which corresponds to the upper resolution of screen 2 . This simulated dataset was used to test the reconstruction method as well as the ideal result expected from this beam line setup. The tomographic reconstruction was

Figure 2: Sketch of the ARES beam line as it was installed until April 2021 and used for the 4D tomographic measurements. The phase advance of the beam is changed by varying the strength of the four quadrupoles. Projections of the beam are recorded on screen 2 (measurement point) and the phase spaces are reconstructed at screen 1 (reconstruction point).

Figure 3: Example of the evolution of the phase advances (top) and beta functions (bottom) for a subset of matched scan points for the 4D tomography measurement. The phase advance in x is kept constant while varying the phase advance in y over a range of 180°. Each shade of the colors corresponds to a different scan point.
performed using the Simultaneous Algebraic Reconstruction Technique (SART) [17] with two iterations implemented in the python scikit-image [18] package. The reconstruction was performed in normalized phase space [19] using a resolution of 100 bins for each of the four dimensions. Negative charge density values in the reconstruction, which can arise due to reconstruction artefacts, were set to zero. The results from the simulation study are presented in the following section. The analysis of the experimental data is still ongoing.
[6] W. Kuropka, F. Mayet, R. Aßmann, and U. Dorda, "Full PIC simulation of a first ACHIP experiment @ SINBAD", Nucl. Instr. Meth., vol. 909, pp. 193-195, 2018. doi:10.1016/j . nima.2018.02.042
[7] S. Jaster-Merz et al., "Development of a beam profile monitor based on silicon strip sensors for low-charge electron beams", vol. 1596, no. 1, p. 012047, 2020. doi : 10. 1088/17426596/1596/1/012047
[8] W. Kuropka, R. Aßmann, U. Dorda, and F. Mayet, "Simulation of deflecting structures for dielectric laser driven accelerators", Nucl. Instr. Meth., vol. 909, pp. 196-198, 2018. doi:10.1016/j.nima.2018.02.032
[9] A. Eichler et al., "First Steps Toward an Autonomous Accelerator, a Common Project Between DESY and KIT", presented at the 12th Int. Particle Accelerator Conf. (IPAC'21), Campinas, Brazil, May 2021, paper TUPAB298, this conference.
[10] P. Craievich et al., "Novel X-band transverse deflection structure with variable polarization", Phys. Rev. Accel. Beams, vol. 23, p. 112001, Nov. 2020. doi : 10.1103/ PhysRevAccelBeams.23.112001
[11] B. Marchetti et al., "Experimental demonstration of novel beam characterization using a polarizable X-band transverse deflection structure", Sci. Rep., vol. 11, no. 1, pp. 1-14, 2021. doi:10.1038/s41598-021-82687-2
[12] D. Marx, R. W. Assmann, P. Craievich, K. Floettmann, A. Grudiev, and B. Marchetti, "Simulation studies for characterizing ultrashort bunches using novel polarizable X-band transverse deflection structures", Sci. Rep., vol. 9, no. 1, pp. 1-

17, 2019. doi:10.1038/s41598-019-56433-8
[13] D. Marx, "Characterization of Ultrashort Electron Bunches at the SINBAD-ARES Linac", Ph.D. thesis, Universität Hamburg, Hamburg, Germany, 2019. doi : 10. 3204/PUBDB -2019-04190
[14] K. Hock and A. Wolski, "Tomographic reconstruction of the full 4D transverse phase space", Nucl. Instr. Meth., vol. 726, pp. 8-16, 2013. doi:10.1016/j.nima.2013.05.004
[15] A. Wolski, D. C. Christie, B. L. Militsyn, D. J. Scott, and H. Kockelbergh, "Transverse phase space characterization in an accelerator test facility", Phys. Rev. Accel. Beams, vol. 23, p. 032 804, Mar. 2020. doi : 10 . 1103 / PhysRevAccelBeams.23.032804
[16] I. Agapov, G. Geloni, S. Tomin, and I. Zagorodnov, "OCELOT: A software framework for synchrotron light source and FEL studies", Nucl. Instr. Meth., vol. 768, pp. 151156, 2014. doi:10.1016/j.nima.2014.09.057
[17] A. Andersen and A. Kak, "Simultaneous Algebraic Reconstruction Technique (SART): A superior implementation of the ART algorithm", Ultrasonic Imaging, vol. 6, no. 1, pp. 81-94, 1984. doi:10.1016/0161-7346(84)90008-7
[18] S. Van der Walt et al., "Scikit-image: Image processing in python", PeerJ, vol. 2, p. e453, 2014. doi:10.7717/peerj. 453
[19] K. Hock, M. Ibison, D. Holder, A. Wolski, and B. Muratori, "Beam tomography in transverse normalised phase space", Nucl. Instr. Meth., vol. 642, no. 1, pp. 36-44, 2011. doi : 10.1016/j.nima.2011.04.002

[^0]: * sonja.jaster-merz@desy.de

