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Abstract
A MeV ultrafast electron diffraction (MUED) instrument

is a unique characterization technique to study ultrafast pro-
cesses in materials by a pump-probe method. This relatively
young technology can be advanced further into a turn-key
instrument by using data science and artificial intelligence
(AI) mechanisms in conjunctions with high-performance
computing. This can facilitate automated operation, data
acquisition and real-time or near-real-time processing. AI-
based system controls can provide real-time feedback on
the electron beam which is currently not possible due to
the use of destructive diagnostics. Deep learning can be ap-
plied to the MUED diffraction patterns to recover valuable
information on subtle lattice variations that can lead to a
greater understanding of a wide range of material systems.
A data science enabled MUED facility will also facilitate
the application of this technique, expand its user base, and
provide a fully automated state-of-the-art instrument. We
will discuss the progress made on the MUED instrument in
the Accelerator Test Facility of Brookhaven National Labo-
ratory.

INTRODUCTION
MeV ultrafast electron diffraction (MUED) is a pump-

probe characterization technique for studying ultrafast pro-
cesses in materials. The use of relativistic beams leads to
decreased space-charge effects compared to typical ultrafast
electron diffraction experiments employing energies in the
keV range [1, 2]. Compared to other ultrafast probes such
as X-ray free electron lasers, MUED has a higher scattering
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cross section with material samples and allows access to
higher order reflections in the diffraction patterns due to
the short electron wavelengths. However, this is a relatively
young technology and several factors contribute to making
it challenging to utilize, such as beam instabilities which can
lower the effective spatial and temporal resolution.

In the past years, machine learning (ML) approaches to
materials and characterization techniques have provided a
new path towards unlocking new physics by improving ex-
isting probes and increasing the user’s ability to interpret
data. In particular, ML methods can be employed to control
characterization probes in near-real time, acting as virtual
diagnostics, or ML can be deployed to extract features and
effectively denoise acquired data. In this later case, convo-
lutional neural network architectures such as autoencoder
models are an attractive and more powerful alternative to
conventional denoising techniques. The autoencoder models
provide a method of unsupervised learning of latent space
representation of data that can help reduce the noise in the
data. By supplying a paired training dataset of noisy and
“clean” data, these ML models can denoise measurements
quite effectively [3, 4]. This method relies on the existence
of an ideal dataset with no noise which can be obtained by
simulation or by averaging existing noisy datasets. However,
in some cases these are not accessible or practical to use.
Generative adversarial networks (GANs) are a more suitable
option when no “clean” data are available and have been
proven to perform well for blind image denoising [5]. They
can be trained to estimate and generate the noise distribution,
thus producing paired training datasets that can be fed to an
autoencoder model. These approaches can lead to increased
resolution if employed to denoise, for example, diffraction
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patterns. In addition, deep convolutional neural network
architectures can be used for data analysis. Laanait et al.
measured diffraction patterns of different oxide perovskites
using scanning transmission electron microscopy and, by
applying a custom ML algorithm, were able to invert the
materials structure and recover 3-dimensional atomic distor-
tions [6]. ML has yet to be applied to the MUED technique,
where it can certainly enable advances that can further our
understanding of ultrafast material processes in a variety of
systems.

EXPERIMENTAL
The MUED instrument is located in the Accelerator Test

Facility at Brookhaven National Laboratory. A schematic
representation of the experimental setup is presented in
Fig. 1. The femtosecond electron beams are generated using
a frequency-tripled Ti:Sapphire laser that illuminates a cop-
per photocathode generating a high brightness beam. The
electrons are then accelerated and compressed in a 1.6-cell
RF cavity achieving energies up to 5 MeV. Current parame-
ters of the electron beam source optimized for stability are
presented in Table 1. The sample chamber is located down-
stream from the source with a motorized holder for up to nine
samples with cryogenic cooling capabilities and a window
to allow laser pumping of the material. Next to the chamber
a RF deflecting cavity is located and 4 m downstream the
detector system is placed to collect the diffraction patterns.
The detector consists of a phosphor screen followed by a
copper mirror (with a hole for non-diffracted electrons to
pass) and a CCD Andor camera of 512 pixels x 512 pixels
with a large aperture lens. Suitable material systems for
MUED require careful preparation with typical lateral sizes
of 100 - 300 µm and roughly < 100 nm thickness to assure
electron transparency. Laser fluency is adjusted to avoid
radiation-induced damage of the probed material.

Table 1: MUED Source Parameters for Typical Operation

Beam energy: 3 MeV

Number of electrons per pulse: 1.25 × 106

Temporal resolution: 180 fs

Beam diameter: 100 - 300 µm

Repetition rate: 5 - 48 Hz

Number of electrons per sec per µm2: 88 - 880

FUTURE PLANS
Due to the impact of the COVID pandemic on research fa-

cilities, no experiments have yet been carried out the MUED
instrument. When beamtime becomes available for the au-
thors, measurements on the following material systems are
planned: black phosphorus, graphite and polycrystalline
gold films. These material systems have been previously
investigated using keV-ultrafast electron diffraction under

the same photoexcitation employed in the MUED instru-
ment [7–10]. The lattice dynamics and electron-phonon
coupling effects on these systems are of itself significant
phenomena to study using MUED. However, our focus will
be on implementing ML methods to increase the resolution
of single shot measurements. Currently, diffraction patterns
are obtained by averaging over multiple shots to minimize
the effect of instabilities such as fluctuations in the electron
beam energy. We propose to apply ML methods such as
autoencoders, with or without a GAN model, to estimate the
noise distribution in order to denoise single shot diffraction
patterns. We will produce our input training datasets from
single shot measurements of the different materials listed
above. Paired datasets can be constructed by averaging over
several shots or utilizing simulations for constructing the
diffraction patterns. A GAN model will be implemented to
attempt blind denoising following the work of Chen et al. [5].
We will also explore active learning implementation of the
denoising algorithms to provide users with near-real-time
single shot diffraction patterns that could be analysed on
the fly. As a large amount of data is expected to be gener-
ated, we will also incorporate existing visualization and data
management tools, such as Cinema:Bandit [11] for prompt
display after initial processing.

Accessing single shot capabilities of the MUED instru-
ment can not only provide significant insights into material
processes and higher spatial resolution in the measurements,
but they can also be employed to estimate electron beam
parameters. Yang et al. demonstrated that by analysing
the Bragg peaks the shot-to-shot energy fluctuation and the
spatial-pointing jitter can be measured, thus determining the
electron beam energy spread for each pattern [12]. The fea-
tures in the diffraction pattern could be extracted effectively
by a convolutional neural network, which when implemented
after denoising the images can serve as a nondestructive
probe of the electron beam. The convolutional neural net-
work will take denoised single shot diffraction patterns as
input and output electron beam characteristics, such as en-
ergy spread. Single shot diffraction patterns can then be
filtered according to beam energy leading to increased res-
olution in the technique as the effects of beam fluctuations
are minimized.

Our work will also focus on the analysis of diffraction
patterns. Deep learning algorithms can be implemented
to attempt structural reconstruction based on the work by
Laanait et al. [6] to understand subtle lattice changes in-
duced by the laser pumping. In addition, search and match
protocols can be put in place leveraging existing databases
of density functional calculations. Bridging computing re-
sources between user facilities will be a priority to facilitate
supercomputing and cloud computing, enabling near-real-
time analysis that can steer experiments and provide relevant
analysis during limited time in the MUED instrument.
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Figure 1: Schematic representation of the experimental setup for the MUED instrument located in the Accelerator Test
Facility at Brookhaven National Laboratory.
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