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Abstract
The quantum lifetime of electron beam in storage rings

is defined by the particle loss that caused by the aperture
limitation. Based on the equilibrium beam distribution pro-
duced by radiation damping and quantum excitation, the 1-d
quantum lifetime has been well studied by A. Piwinski. In
this paper, we give the derivation of the 3-d quantum life-
time, which can be applied to the machines with elliptical
aperture and momentum acceptance.

INTRODUCTION
Except photon sources, the high-intensity high-current

electron storage ring is also needed for electron cooling de-
vices, electron-ion colliders and other applications [1, 2]. In
such machines, the transverse dynamic aperture and momen-
tum acceptance may be small since the high intensity and
the use of insertion devices for strong synchrotron radiation.
Even though the Touschek effect is the main reason for the
particle loss in electron storage rings, the quantum lifetime
is still an important factor that needs to be considered in the
machine design and operation.

Since the aperture of an accelerator is limited by acceler-
ator components such as vacuum chambers, beam position
monitors, etc., the electron beam with Guassian distribution,
which has an infinitely long tail, can get lost at the aperture,
which defines the quantum lifetime. In addition, dynamic
aperture is also a reason for the particle loss. Normally, the
physical and dynamic apertures are so large that the quantum
lifetime is smaller than the damping time. So, the quantum
lifetime can be calculated by the flux of electron passing
through the aperture based on the equilibrium distribution
of the beam, which is determined by the quantum excitation,
radiation damping and other effects. The 1-d quantum life-
time that only considers one dimensional aperture has been
well modeled by A. Piwinski [3]. In this paper, we give the
derivation of the 3-d quantum lifetime, in which the ellip-
soidal aperture is considered. The simulation is consistent
with the formula both for 1-d and 3-d lifetime model.

BEAM DISTRIBUTION
Assuming there is no external electromagnetic forces in

the system, the Fokker-Plank equation of the electron beam
distribution is:

𝜕𝑤
𝜕𝑡 + 𝜕𝐼𝑥

𝜕𝜖𝑥
+

𝜕𝐼𝑦
𝜕𝜖𝑦

+
𝜕𝐼𝑝
𝜖𝑝

= 0, (1)

where 𝑤 = 𝑤(𝜖𝑥, 𝜖𝑦, 𝜖𝑧, 𝑡) is the beam distribution function
(∫ 𝑤𝑑𝑤 = 1), and 𝐼 is the flux of density, which is defined
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by:

𝐼𝑥,𝑦,𝑧 = 2𝜆𝑥,𝑦,𝑧𝜖𝑥,𝑦,𝑧𝑀𝑥,𝑦,𝑧 + 𝜖𝑥,𝑦,𝑧𝑀𝑥,𝑦,𝑧
𝜕𝑤

𝜕𝜖𝑥,𝑦,𝑧
, (2)

where 𝜆 is the damping rate and 𝑀 is the factor of quantum
excitation. Considering Gaussian distribution, the stationary
beam distribution function (𝜕𝑤/𝜕𝑡 = 0) is

𝑤(𝜖𝑥, 𝜖𝑦, 𝜖𝑧) = 1
8 ̂𝜖𝑥 ̂𝜖𝑦 ̂𝜖𝑧

𝑒𝑥𝑝(− 𝜖𝑥
2 ̂𝜖𝑥

−
𝜖𝑦
2 ̂𝜖𝑦

−
𝜖𝑧
2 ̂𝜖𝑧

), (3)

where ̂𝜖𝑥, ̂𝜖𝑦 and ̂𝜖𝑧 are the rms beam emittance, which are
defined by ̂𝜖𝑥,𝑦,𝑧 = 𝑀𝑥,𝑦,𝑧/4𝜆𝑥,𝑦,𝑧. It is worth noting that the
longitudinal emittance here corresponds to the momentum
spread 𝜖𝑧 = 𝛿2

𝑝.

BEAM LIFETIME
We assume the aperture of the system is large (>3𝜎) so

that the Gaussian distribution of electron beam can be kept at
the equalibrium state. Then the beam lifetime can be defined
by the flux of electron passes inward or outward through the
aperture:

1
𝜏 = − 1

𝑁
𝑑𝑁
𝑑𝑡 = − 1

𝑑𝑡 ∭
𝑉

𝑤𝑑𝜖𝑥𝑑𝜖𝑦𝑑𝜖𝑧

= ∭
𝑉

𝜕𝐼𝑥
𝜕𝜖𝑥

+
𝜕𝐼𝑦
𝜕𝜖𝑦

+
𝜕𝐼𝑧
𝜕𝜖𝑧

𝑑𝜖𝑥𝑑𝜖𝑦𝑑𝜖𝑧

= 1
𝜏𝑥

+ 1
𝜏𝑦

+ 1
𝜏𝑧

,

(4)

where 𝑉 = 𝑓 (𝜖𝑥, 𝜖𝑦, 𝜖𝑧) is the beam acceptance defined by
the 3-d aperture. Here we assume the aperture is in the shape
of ellipsoid:

𝜖𝑥
𝐴2

𝑥 ̂𝜖𝑥
+

𝜖𝑦

𝐴2
𝑦 ̂𝜖𝑦

+
𝜖𝑧

𝐴2
𝑧 ̂𝜖𝑧

= 1, (5)

where 𝐴𝑥 = 𝑎/�̂�𝑥, 𝐴𝑦 = 𝑏/�̂�𝑦 and 𝐴𝑧 = 𝑐/ ̂𝛿𝑝 are the ratios
between the aperture (𝑎, 𝑏, 𝑐) and the rms size of beam in
three dimensions. The lifetime, for example 𝜏𝑥, can be
calculated by:

1
𝜏𝑥

= ∫
𝐴2

𝑦 ̂𝜖𝑦

0
∫

𝐴2
𝑧 ̂𝜖𝑧(1−

𝜖𝑦
𝐴2𝑦�̂�𝑦

)

0
𝐼𝑥𝑚(𝜖𝑦, 𝜖𝑧)𝑑𝜖𝑧𝑑𝜖𝑦. (6)

Based on the method in [3], mutiplying with
𝑒𝑥𝑝(2𝜆𝜖𝑥/𝑀)/𝜖𝑥 in Eq. (2) and integrate both sides,
the maximum flux 𝐼𝑥𝑚 = ∫𝜖𝑥𝑚

0 𝜕𝐼𝑥/𝜕𝜖𝑥𝑑𝜖𝑥 can be derived
by:

𝐼𝑥𝑚
𝜖𝑥𝑚

∫
𝜖𝑥𝑚

−∞
𝑒𝑥𝑝( 𝜖𝑥

2 ̂𝜖𝑥
)𝑑𝜖𝑥 = 𝑀𝑥𝑤(𝜖𝑥 = 0, 𝜖𝑦, 𝜖𝑧), (7)
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then we get:

𝐼𝑥𝑚 = 2𝜆𝑥𝑒− 𝜖𝑥𝑚
2�̂�𝑥 𝑤(𝜖𝑥 = 0, 𝜖𝑦, 𝜖𝑧). (8)

where 𝜖𝑥𝑚 = 𝐴2
𝑥 ̂𝜖𝑥(1 − 𝜖𝑦

𝐴2
𝑦 ̂𝜖𝑦

− 𝜖𝑧
𝐴2

𝑧 ̂𝜖𝑧
). Then substituing

Eq. (8) into Eq. (6), 𝜏𝑥 can be calculated. The calculation
in the other two planes are the same. With the help of math-
ematica, we obtain

1
𝜏𝑥

= 𝜆𝑥𝐴2
𝑥𝐴2

𝑦𝐴2
𝑧 (𝑙𝑥𝑥𝑒

−𝐴2𝑥
2 + 𝑙𝑥𝑦𝑒

−𝐴2𝑦
2 + 𝑙𝑥𝑧𝑒

−𝐴2𝑧
2 )

1
𝜏𝑦

= 𝜆𝑦𝐴2
𝑥𝐴2

𝑦𝐴2
𝑧 (𝑙𝑦𝑥𝑒

−𝐴2𝑥
2 + 𝑙𝑦𝑦𝑒

−𝐴2𝑦
2 + 𝑙𝑦𝑧𝑒

−𝐴2𝑧
2 )

1
𝜏𝑧

= 𝜆𝑧𝐴2
𝑥𝐴2

𝑦𝐴2
𝑧 (𝑙𝑧𝑥𝑒

−𝐴2𝑥
2 + 𝑙𝑧𝑦𝑒

−𝐴2𝑦
2 + 𝑙𝑧𝑧𝑒

−𝐴2𝑧
2 ),

(9)

where

𝑙𝑥𝑥 =
𝐴2

𝑥(4 + 𝐴2
𝑥 − 𝐴2

𝑦 − 𝐴2
𝑧 ) + 𝐴2

𝑦𝐴2
𝑧 − 2(𝐴2

𝑦 + 𝐴2
𝑧 )

(𝐴2
𝑦 − 𝐴2

𝑥)2(𝐴2
𝑧 − 𝐴2

𝑥)2

𝑙𝑦𝑦 =
𝐴2

𝑦(4 + 𝐴2
𝑦 − 𝐴2

𝑥 − 𝐴2
𝑧 ) + 𝐴2

𝑥𝐴2
𝑧 − 2(𝐴2

𝑥 + 𝐴2
𝑧 )

(𝐴2
𝑦 − 𝐴2

𝑥)2(𝐴2
𝑧 − 𝐴2

𝑥)2

𝑙𝑧𝑧 =
𝐴2

𝑧 (4 + 𝐴2
𝑧 − 𝐴2

𝑥 − 𝐴2
𝑦) + 𝐴2

𝑥𝐴2
𝑦 − 2(𝐴2

𝑥 + 𝐴2
𝑦)

(𝐴2
𝑥 − 𝐴2

𝑧 )2(𝐴2
𝑦 − 𝐴2

𝑧 )2

𝑙𝑥𝑦 = −2
(𝐴2

𝑦 − 𝐴2
𝑧 )(𝐴2

𝑦 − 𝐴2
𝑥)2

𝑙𝑦𝑥 = −2
(𝐴2

𝑥 − 𝐴2
𝑧 )(𝐴2

𝑥 − 𝐴2
𝑦)2

𝑙𝑥𝑧 = −2
(𝐴2

𝑧 − 𝐴2
𝑦)(𝐴2

𝑧 − 𝐴2
𝑥)2

𝑙𝑧𝑥 = −2
(𝐴2

𝑥 − 𝐴2
𝑦)(𝐴2

𝑥 − 𝐴2
𝑧 )2

𝑙𝑦𝑧 = −2
(𝐴2

𝑧 − 𝐴2
𝑥)(𝐴2

𝑧 − 𝐴2
𝑦)2

𝑙𝑧𝑦 = −2
(𝐴2

𝑦 − 𝐴2
𝑥)(𝐴2

𝑦 − 𝐴2
𝑧 )2 .

Finally, the quantum lifetime is simplified as:

1
𝜏 = 𝐴2

𝑥𝐴2
𝑦𝐴2

𝑧 (𝑘𝑥𝑒
−𝐴2𝑥

2 + 𝑘𝑦𝑒
−𝐴2𝑦

2 + 𝑘𝑧𝑒
−𝐴2𝑧

2 ), (10)

where

𝑘𝑥,𝑦,𝑧 = 1
(𝐴2

𝑧,𝑥,𝑦 − 𝐴2
𝑥,𝑦,𝑧)2(𝐴2

𝑦,𝑧,𝑥 − 𝐴2
𝑥,𝑦,𝑧)2 {𝜆𝑥,𝑦,𝑧[

𝐴2
𝑥,𝑦,𝑧(𝐴2

𝑥,𝑦,𝑧 − 𝐴2
𝑦,𝑧,𝑥 − 𝐴2

𝑧,𝑥,𝑦) + 𝐴2
𝑦,𝑧,𝑥𝐴2

𝑧,𝑥,𝑦]
+ 2𝐴2

𝑥,𝑦,𝑧(2𝜆𝑥,𝑦,𝑧 − 𝜆𝑦,𝑧,𝑥 − 𝜆𝑧,𝑥,𝑦)
+ 2𝐴2

𝑦,𝑧,𝑥(𝜆𝑧,𝑥,𝑦 − 𝜆𝑥,𝑦,𝑧)
+ 2𝐴2

𝑧,𝑥,𝑦(𝜆𝑦,𝑧,𝑥 − 𝜆𝑥,𝑦,𝑧)}.

We see that the quantum lifetime only depends on damping
rate 𝜆 and the aperture 𝐴. If the aperture in the other two
dimensions are very large, the formula agrees with the 1-d
form: 1/𝜏 = 𝜆𝐴2𝑒𝑥𝑝(−𝐴2

2 ), which is consistent with [3].

SIMULATION
In this section, we introduce a simple simulation to track

the particle loss that due to radiation damping and quan-
tum excitation. In the simulation, the stochastic process is
independently calculated in each dimension, in which the
dispersion and beam rotation in phase space are not consid-
ered. The kinetic equation on each particle, for example in
transverse plane, is described by

Δ𝑥 = −𝜆𝑥𝑥 + √2𝜆𝑥𝜎2
𝑥𝜂

Δ𝑝𝑥 = −𝜆𝑥𝑝𝑥 + √2𝜆𝑥𝜎2
𝑝𝑥

𝜁,
(11)

where 𝜆 is the radiation damping rate, 𝜎𝑥 and 𝜎𝑝𝑥 are rms
beam sizes in phase space at the equilibrium state, and 𝜂
and 𝜁 are random numbers with standard gaussian distribu-
tion. Based on the aperture size, the beam lifetime can be
calculated by the tracking of particle loss.

Firstly, we finished the 1-d simulation and compared the
results with the theoretical model. We start with the beam
that is already in the equilibrium state, then track the parti-
cle loss at the aperture during the stochastic process. The
damping time is 1/𝜆=10 ms and the aperture is set to be
4.6𝜎.

Figure 1 shows the evolution of the beam emittance and
the particle loss, which shows a good agreement with the cal-
culation from Piwinski’s formula. The beam distribution at
the start and the end of simulation is shown in Fig. 2, in which
the lost particles illustrate the aperture. The dependence of
the 1-d quantum lifetime on the aperture is calculated by
simulation and compared with Piwinski’s formula, it shows
a good agreement, as shown in Fig. 3.

Figure 1: Evolution of beam emittance and particle number
in the 1-d tracking (𝐴 = 4.6, 𝜆 = 100 𝑠−1, 𝜏𝑡ℎ𝑒𝑜𝑟𝑦 = 18.6 𝑠).

Based on the same mothed, the 3-d particle tracking is
also simulated, in which the ellipsoidal aperture (as defined
by Eq. (5)) is used. The radiation damping rate is the same
in all three dimensions with 𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 100 𝑠−1. The
results with different apertures are shown in Fig. 4, and they
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are consistent with the calculation from Eq. (10) (dashed
line).

Figure 2: Beam distribution at the start (left) and the end
(right) of simulation. The lost particles illustrate the aperture
which is 4.6𝜎.

Figure 3: Comparison of the 1-d quantum lifetime between
simulation and Piwinski’s formula.

We see that for the aperture 𝐴𝑥/𝐴𝑦/𝐴𝑧 = 4.6/18/18, the
vertical and longitudinal aperture is large enough that the
quantum lifetime is almost only determined by the horizon-
tal aperture, which mean the simulation is close to the 1-d
result. Comparing with Fig. 1, we see that the two results are
very close as expected. It is worth noting that the coupling
effect caused by dispersion is not included in the simula-
tion, which results in the particle loss underestimated during
tracking, especially for the simulation with small aperture as
shown in Fig. 4. However, the 1-d and 3-d simulation results
show good agreement with the theoretical formula, which

Figure 4: Simulation result of the particle loss with 3-d
aperture, the dashed line is calculated by Eq.(10). The
theoretical lifetime is 16.3 s, 9.2 s and 6.7 s, respectively
(𝜆𝑥 = 𝜆𝑦 = 𝜆𝑧 = 100 𝑠−1).

demonstrate the 3-d quantum lifetime formula is correct and
reasonable for the beam lifetime estimation.

SUMMARY
In this paper, we extended Piwinski’s 1-d quantum life-

time formula to 3-d form, in which the ellipsoidal aperture
is considered. The derivation of the 3-d quantum lifetime
is detailed, and the formula shows a good agreement with
the particle simulation. This 3-d lifetime formula can be
more accurate for the electron machines with the limita-
tion of physical aperture, dynamic aperture and momentum
acceptance.
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