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Abstract
The amplitude-dependent shift of betatron tunes was mea-

sured at NSLS-II and compared with the lattice model. The
comparison indicated the large change of the amplitude-
tune dependence over time apparently can not be solely
explained by magnets variation or beta function changes,
but it seems to be explained by energy changes. On the other
hand, the energy change required to fit the observed change
of amplitude-tune dependence is too large to be explained by
the RF frequency change and the change of the sum of orbit
correctors’ strengths in the period of the measurements. To
explain this contradiction, our analysis shows the long-term
storage ring circumference change can explain the apparent
energy change. Our data indeed show a seasonal change
of the amplitude-tune dependence over long-term observa-
tion. This also clearly indicated relation to the long-term
closed orbit drift. Hence the current work indicates a new
strategy to study how to use the amplitude-tune dependence
as a guideline to analyze the long-term drift of the lattice
parameters and closed orbit drift and to improve the orbit
and machine performance stability.

INTRODUCTION
In 2015-2020, we systematically measured the amplitude-

dependent shift of betatron tunes and compared it with the
lattice model for two modes of the NSLS-II storage ring [1]:
bare lattice without insertion devices and the lattice with
3 pairs of damping wigglers (3DW). To fit the data with
simulation we need change setupoles and energy. Consider
the possible variation range of sextupoles, the only way to
explain the data is to assume a very large energy change
of order of 0.5-0.7%. This appears to contradict our data
records of RF frequency change, correctors strength varia-
tion, or possible beta-beat. This report points out a possible
interpreation of this apparent discrepancy. We first give two
examples. Due to the space limit we only compare two sets
of data in Table 1,2 and leave out more data elsewhere.

The 2015 data, shown in the first 4 rows of Table 1, when
compared with simulation, can be explained by an energy
change of 𝑑𝑝 = −0.4% from the bare lattice mode. The
measured data in 2020 in row 5-8 was very different from
the data measured right after the machine commissioning in
2015. We assume the installation of 3 damping wigglers and
other insertion devises during the period 2015-2020 may
introduce some effective sextupoles, and even for bare lattice
with the insertion devises open they remain effective.

As a model, we assume 12 effective sextupoles at the up-
stream ends and downstream ends of the 3 damping wigglers.

The effective sextupoles are assumed to be thin sextupoles,
with the same strengths as the regular sextupoles. We tried
various patterns of the strengths among these 12 sextupoles
by tracking simulations [2]. We simulated the effects of
these sextpoles and energy change and fit with polynomials.
We fit the polynomial model with the measured data, and
then simulate with the fit and compare with measurements.
The best fit is always for the pattern of the same strength with
the same sign for all 12 effective sextupoles. We denote the
strength as 𝑑𝐾 using the same scale as the regular sextupoles
with 0.2 m length. The simulation gives a best agreement
with the data at 𝑑𝐸 = −1.49% and 𝑑𝐾 = −1.24 m−2 in
column 3 of Table 1. Similar measured data with the lattice
of damping 3 wigglers, always led to best fit with simulation
assumung a large energy change during different periods.
But such large energy change contradicts the RF frequency
change during these periods.

Table 1: Measured Amplitude Dependence Compared With
Simulation

Bare Lattice Bare Lattice tracking by elegant
(2015) using fit result by

measurement polynomials
𝑑𝐸 = −0.4%

𝑑𝜈𝑥/𝑑(2𝐽𝑥) -867 -1277
𝑑𝜈𝑦/𝑑(2𝐽𝑥) -300 -367
𝑑𝜈𝑥/𝑑(2𝐽𝑦) -470 -518
𝑑𝜈𝑦/𝑑(2𝐽𝑦) -4897 -5357

Bare Lattice Bare Lattice tracking by elegant
(2020) using fit result by

measurement polynomials
𝑑𝐾 = −1.24,
𝑑𝐸 = −1.49%

𝑑𝜈𝑥/𝑑(2𝐽𝑥) -1317 -1134
𝑑𝜈𝑦/𝑑(2𝐽𝑥) -19 10
𝑑𝜈𝑥/𝑑(2𝐽𝑦) -3 -173
𝑑𝜈𝑦/𝑑(2𝐽𝑦) -5287 -5269

Another comparison is to compare the bare lattice data
and the 3DW lattice data measured in 2020 taken within
one beam study shift in Table 2. The purpose is that we can
check if there is an expected energy change by recording the
orbit correctors’ strengths and the RF frequency during the
study. The measured data in column 2 for the 3DW lattice,
agree with the tracking data in column 3 based on the fit
𝑑𝐾 = −1.1, 𝑑𝐸 = −0.78%. As already shown in Table 1,
the measured data in rows 5-8, column 1 for the bare lattice,
agree with the tracking data in column 3 based on the fit
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Table 2: Measured Amplitude Dependence Compared With
Simulation

3W Lattice 3W Lattice 3W Lattice
measurement tracking using fit

(Y. Hidaka 2020) by polynomials
𝑑𝐾 = −1.1,

𝑑𝐸 = −0.78%

𝑑𝜈𝑥/𝑑(2𝐽𝑥) -2737 -2663
𝑑𝜈𝑦/𝑑(2𝐽𝑥) -602 -592
𝑑𝜈𝑥/𝑑(2𝐽𝑦) -574 -734
𝑑𝜈𝑦/𝑑(2𝐽𝑦) -4863 -5065

𝑑𝐾 = −1.24, 𝑑𝐸 = −1.49%. From this result it seems the
main change is 𝑑𝐸 = −0.78% − (−1.49%) = 0.71% while
𝑑𝐾 change is very small (𝑑𝐾 = 0.14). Within this study
shift the beam energy change is given by 𝑑𝐸 = 1

2𝜋 ∑𝑖 Δ𝜃𝑖,
where Δ𝜃𝑖 is the variation of the corrector strength. Between
the bare lattice and the 3DW lattice ∑𝑖 Δ𝜃𝑖 = 2.8×10−5, so
𝑑𝐸 = 4×10−6 ≈ 0. The RF frequency change was also zero.
This zero energy change contradicting the non-zero value
resulted from the polynomial fit of the measured amplitude-
tune dependence, is a difficulty we need to resolve.

Thus we suspect a need for a seasonal change of models to
compare with. The seasonal variations of the RF frequency
and of the sum strength of orbit correctors were observed
in 2018-2020. A sum of the horizontal corrector currents, a
sum of the vertical corrector currents, and the RF frequency
are shown in the top, middle, and bottom graph of Fig. 1a),
respectively. This is compared with the seasonal change of
amplitude-tune dependence in Fig. 1b).

We explored another probable cause of the amplitude-tune
dependency change: the remaining beta beat after lattice
correction. We simulated the change of the amplitude-tune
dependence using the ELEGANT code. Usually, the beta-
beat is reduced to less than 1-2% after the lattice correction.
The simulated change of the amplitude-tune dependence is
far less than experimentally observed in the studies. The
change becomes comparable to what we observed only if
the beta beat is of the order of 8%. So this excluded the
possibility of changes due to the beta beat.
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Figure 1: a) (Left) Measured seasonal variations of the RF
frequency and of the sum strength of orbit correctors. b)
(Right) 𝑑𝜈𝑥/𝑑(2𝐽𝑥) coefficient measured in 2018-2020.

RELATION BETWEEN THE RING
CIRCUMFERENCE, ENERGY, RF

FREQUENCY, CORRECTOR STRENGTH,
AND GROUND MOTION

Is it possible that the RF frequency control and orbit cor-
rection between each measurement force the energy change
to be zero, while the change of the amplitude-tune depen-
dence due to the energy change remains after the orbit correc-
tion and RF control? We are going to study this possibility.
We first study two conditions to see the relation between
RF frequency, energy, orbit correctors, circumference, and
ground motion:

Condition 1: Total Bending Angle Must Remain
2𝜋

The first condition is that ∫ 𝑑𝜃 = 2𝜋, where 𝑑𝜃 is the
bending angle along the ring. In the following 𝐵(𝑠) =
𝐵0(𝑠) = 𝐵0 in the dipole magnets, elsewhere it is zero.
In addition, there are changes at discrete points of the orbit
correctors 𝛿𝐵𝑖, with a revision that there are Δ𝑠𝑗 due ground
or orbit motion in the dipoles, which contribute the bending
angle change ∑

𝑗

Δ𝑠𝑖
𝜌0

, the energy change 𝛿 also contribute to

the bending angle. When we neglect second order effects,
since the bending angle must remain 2𝜋, we have the change
of bending angle

Δ𝜃 = 0 = − ∫ 𝐵0(𝑠)
𝐵0

𝑑𝑠
𝜌0

𝛿 + ∑
𝑖

𝛿𝐵𝑖Δ𝐿𝑖𝛿(𝑠 − 𝑠𝑖)
𝐵0𝜌0

+ ∑
𝑖

Δ𝑠𝑖
𝜌0

= −2𝜋𝛿 + ∑
𝑖

Δ𝜃𝑖 + ∑
𝑗

Δ𝑠𝑗
𝜌0

,

where Δ𝜃𝑖 = 𝛿𝐵𝑖Δ𝐿𝑖
𝐵0𝜌0

, and 𝑗 is the dipole index. The sum of
the corrector strength differences between the bare lattice
and the 3DW lattice measured in 2020, ∑𝑖 Δ𝜃𝑖 = 2.8×10−5,

1
2𝜋 ∑𝑖 Δ𝜃𝑖 is far less than required 0.71%. Hence, ∑𝑗

Δ𝑠𝑗
2𝜋𝜌0

may account for the energy change or the amplitude-tune
dependence change even if 1

2𝜋 ∑𝑖 Δ𝜃𝑖 = 0, but the energy
change appears to be far less than 0.7%, to be explained in
the following.

Condition 2: Relation Between RF Frequency
Change 𝛿𝑓, Energy Change 𝛿, Circumference
Change Δ𝐶, and Δ𝑠 Due to the Ground Motion

Take into account the contribution of Δ𝑠 to the circumfer-
ence change Δ𝐶: the condition for the relation between Δ𝐶
and the RF frequency 𝑑𝑓, the corrector strength change Δ𝜃𝑖,
the relative energy change 𝛿, and the orbit change Δ𝑥(𝑠):

Δ𝐶 = Δ𝑠 + ∮ Δ𝑥(𝑠)
𝜌 𝑑𝑠 + ∑ Δ𝜃𝑖𝐷𝑖𝛿 + 𝐶𝛼𝑐𝛿,

here ∮ Δ𝑥(𝑠)
𝜌 𝑑𝑠 is due to the orbit error, independent of 𝛿.

(∫ 𝐷(𝑠)
𝜌 𝑑𝑠) 𝛿 is due to 𝛿, ∑

𝑖
Δ𝜃𝑖𝐷𝑖𝛿 is due to the correc-
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tor strength change, Δ𝑠 is due to the floor motion (ther-
mal expansion plus the orbit change from ground motion).
(∫ 𝐷(𝑠)

𝜌 𝑑𝑠) 𝛿 = 𝐶𝛼𝑐𝛿 is the contribution from a perfect
machine (𝛼𝑐 is the momentum compaction). We estimate
various forms of Δ𝐶:

1. Δ𝐶 caused by thermal expansion, if a ring circumfer-
ence is 800 m, and Δ𝑥 is the same everywhere with
200 µm, then 𝑅 → 𝑅+Δ𝑥, and 𝐶 → 𝐶 +Δ𝐶 = 2𝜋(𝑅+
Δ𝑥), Δ𝑠 = Δ𝐶 = 2𝜋Δ𝑥 = 2𝜋 × 200 µm = 1 200 µm
=1.2 mm

2. Δ𝐶 caused by the energy change 𝛿 = 1%, then Δ𝑠 =
−𝐶𝛼𝑐𝛿 = −800 m×3.7×10−4×1% = -2960 ×10−6 m≈
− 3 mm

3. Δ𝐶 caused by the tranverse orbit distorsion ∮ Δ𝑥(𝑠)
𝜌 𝑑𝑠:

since ∮ 1
𝜌𝑑𝑠 = Δ𝜃 = 2𝜋, so ∮ Δ𝑥(𝑠)

𝜌 𝑑𝑠 ∼ 2𝜋Δ𝑥 ≈
6 × 200 µm ∼1 mm

4. Δ𝐶 caused by the corrector changes in dispersive re-
gions ∑ 𝐷𝑖𝛿Δ𝜃𝑖, The 2020 data gives the RMS cor-
rector strength 𝜎𝜃 = 0.18 mrad assuming random walk
of 180 correctors, we get √180𝜎𝜃 =2.4 mrad, taking
𝐷𝑖 = 0.2 m, even if 𝛿 = 1%, this term is neglegible.

So all estimates except ∑ 𝐷𝑖𝛿Δ𝜃𝑖 lead to Δ𝐶 of the order
of 1 mm .

The estimated change of electron speed for 𝛿 = 1% is
𝑑v
v ≈ 5 × 10−14. Since 𝑑v

v ≪ 𝑑𝐶
𝐶 , we have 𝑑𝑓

𝑓 = −𝑑𝐶
𝐶 , i.e.,

if 𝑑𝑓= 0, then Δ𝐶 = 0. However, if 𝑑𝐶 = 1 mm, then
𝑑𝐶
𝐶 = 1 mm

792 m = 1.2 × 10−6, the condition 2 relates 𝑑𝐶 to Δ𝑠
and the closed orbit change Δ𝑥 as follows:

Δ𝐶 = Δ𝑠 + ∮ Δ𝑥(𝑠)
𝜌 𝑑𝑠 + (∫ 𝐷(𝑠)

𝜌 𝑑𝑠) 𝛿 + ∑ Δ𝜃𝑖𝐷𝑖𝛿 = 0.

So if 𝛿 = 0 and 𝑑𝑓 = 0, then Δ𝑠 + ∮ Δ𝑥(𝑠)
𝜌 𝑑𝑠 = 0. This

only gives a relation between Δ𝑥(𝑠) and Δ𝑠, and can not
be used to explain the apparent change of energy. However,
these estimates given above can be used to understand their
relation to the amplitude-tune dependence changes over time,
as follows.

EFFECT OF THE LONG-TERM
CIRCUMFERENCE VARIATION ON THE

AMPLITUDE-TUNE DEPENDENCE
With these two relations, and in particular, the numerical

estimate of the relation between the circumference, energy
change, RF frequency change, and the corrector strength
change given above, we estimate the possibility of Δ𝑠 effect:
the change of amplitude-tune dependence behaves like it is
caused by the energy change even if the energy does not
change.

If there is a uniform 200 µm increase of 𝑅, all the magnets
and BPMs move accordingly, then Δ𝐶 = 1.2 mm, if 𝛿 =
−0.4%, then closed orbit also will move accordingly and will
be centered at quadrupoles, so the betatron tune will change
very little. The tunes are determined by the one-turn matrix,
the product of matrixes. Δ𝐶/𝐶 = 1.2 mm/792 m ∼10−6,

so the one-turn matrix will change by the order of 10−6,
which is negligible. The result is the correctors’ strengths
also change very little, and a very little beta correction is
needed. The amplitude-tune dependence will not change
either. The main net effect is 𝛿 = −0.4%, but there is no
other observable effect except that if we directly measure
the energy we should see 𝛿 = −0.4%.

If for some reason, e.g., due to some RF tuning or RF
feedback, or due to the limitation of the RF frequency tuning
range, we return to 𝛿 = 0, then the main result looks like 𝛿 =
+0.4%. Then the amplitude-tune dependence will change
like if there is 𝛿 = 0.4%. If we change the circumference
by 1 mm, e.g. by increasing 1 µm for every 1 m around the
ring, there will be a negligible effect observed, even by a
computer. The ELEGANT tracking code specifies energy in
an input file, but it does not influence the beam dynamics.

As a result, even though it is difficult to observe such a
small circumference change without a complicated survey
procedure, it can be observed by monitoring the amplitude-
tune dependence evolution. This requires a systematic long-
term study of the amplitude-tune dependence with appropri-
ate correction of the specified machine lattices separately.
In fact, our existing data indicate a seasonal pattern of the
amplitude-tune dependence, as shown in Fig. 1b).

CONCLUSION
Based on the effect of circumference change mentioned

above, it seems that a very small circumference change has a
large effect on the energy and RF frequency, hence it affects
the closed orbit and introduces the orbit distortion if the
beam energy is not changed according to the circumference
change based on the simple relation Δ𝑠 = −𝐶𝛼𝑐𝛿. By
changing the RF frequency according to this relation to
change the energy, the dispersion pattern in the closed orbit
caused by the circumference change would be reduced if the
circumference change is dominated by uniform expansion or
contraction. The adjustment of the energy change according
to the circumference change may be carried out based on the
guidance of the amplitude tune-dependence variation and
its correction.

Whether this can improve the long-term orbit stability
would still depend on the experimental test to confirm.
Hence we suggest a systematic study of this possibility. If
it is indeed such a case, there might be an improvement in
the beamline alignment for synchrotron light sources. Ob-
viously, this implies a significant change of closed orbit
correction and RF frequency adjustment procedure of the
storage ring.
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