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Abstract
FLUTE (Ferninfrarot Linac- und Test-Experiment) at KIT

is a compact linac-based test facility for novel accelerator
technology and a source of intense THz radiation. FLUTE is
designed to provide a wide range of electron bunch charges
from the pC- to nC-range, high electric fields up to 1.2 GV/m,
and ultra-short THz pulses down to the fs-timescale. The
electrons are generated at the RF photoinjector, where the
electron gun is driven by a commercial titanium sapphire
laser. In this kind of setup the electron beam properties are
determined by the photoinjector, but more importantly by
the characteristics of the laser pulses. Spatial light modu-
lators can be used to transversely and longitudinally shape
the laser pulse, offering a flexible way to shape the laser
beam and subsequently the electron beam, influencing the
produced THz pulses. However, nonlinear effects inherent
to the laser manipulation (transportation, compression, third
harmonic generation) can distort the original pulse. In this
paper we propose to use machine learning methods to ma-
nipulate the laser and electron bunch, aiming to generate
tailor-made THz pulses. The method is demonstrated exper-
imentally in a test setup.

INTRODUCTION
As a versatile test facility, the accelerator FLUTE at KIT

is designed to operate with different electron beam types [1].
FLUTE will also be used as a source of broadband tera-
hertz (THz) pulses for proof-of-principle photon science
experiments. An appropriate control of the electron bunch
could facilitate THz pulses tailored to a specific user re-
quirement. Space charge effects are strong at low energies
and dependent on the phase space distribution of the elec-
tron bunch, which is determined during the bunch creation
process, when the laser pulse hits the photocathode. A pre-
cise control of the laser pulse would help to generate the
desired electron bunch [2, 3], providing a valuable actua-
tor towards the autonomous operation of accelerators [4].
Earlier approaches to laser pulse shaping often use fixed
masks based on micro-lithographic techniques. Although
they can achieve high fidelity pulse shaping, new masks need
to be fabricated each time for different experiments [5]. In
contrast, spatial light modulators (SLM) are programmable
and allow flexible laser pulse shaping [6, 7]. An SLM is
essentially a pixelated device with liquid-crystal (LC) filled
cells. For a given voltage, the LC molecules in the SLM
rotate and result in spatial modulation for phase, amplitude,

∗ chenran.xu@kit.edu

or both. In this paper we focus on the phase-only case. One
type of modern reflective SLM is based on the LCoS (liquid
crystal on silicon) technique and can be simply used as a
second monitor when connected to a computer. The SLM
shapes the laser light according to a computer-generated
hologram (CGH), which is often calculated with the Gerch-
berg–Saxton (GS) algorithm [8]. The wavefront of the light
reflected from the SLM is shifted in phase according to the
displayed hologram, and the modulated laser pulse shape
can be reconstructed on the image plane.

The simplified layout of the FLUTE laser system is shown
in Fig. 1. The uncompressed 800 nm Ti:Sa laser pulses are
transported to the experimental hall over about 35 m. They
are compressed for the third harmonic generation (THG) pro-
ducing the 266 nm UV laser pulses required by the FLUTE
photocathode and then stretched again by quartz rods. The
beam is split directly before the cathode and one beam is
guided to the virtual cathode as a diagnostic for the final
laser pulse shape. Liquid crystals are susceptible to degra-
dation with decreasing wavelengths towards the UV region.
Thus, we placed an SLM in the 800 nm section before the
THG, see Fig. 1. The simple Fourier transform-based GS
algorithm is not sufficient to generate the proper CGH for
laser manipulation, as it has no awareness of the nonlinear
transformations after the SLM, including the THG and the
pulse stretcher, which can distort the modulation. Recently,
machine learning (ML) approaches have been introduced for
CGH computations and achieved better image quality than
traditional methods such as the GS algorithm [9–11]. Based
on these promising results, we use a deep convolutional neu-
ral network (CNN) to learn the optical propagation between
the SLM plane and the image plane as a first step. Such a
CNN can be extended to the FLUTE laser setup as shown
in Fig. 1 and use both, the laser and electron diagnostics
as feedback. Combined with the GS algorithm, it can miti-
gate the non-linear distortions and improve the laser pulse
shaping results.

Figure 1: Simplified FLUTE laser layout [12].

In this paper, we present two test setups for the transverse
and longitudinal laser pulse shape modulation with a com-
mercially available phase-only SLM (model: Hamamatsu

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-WEPAB289

WEPAB289C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

3332

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T25 Lasers



LCoS-SLM X13138-02, wavelength: (800±50) nm, pixels:
1024 × 1272). Then, we experimentally demonstrate our
CNN-GS method with the transverse test setup.

LASER MANIPULATION WITH SLM
Transverse Manipulation

The setup for transverse laser manipulation is shown in
Fig. 2. The collimated 638 nm test laser first passes through
a polarization filter, generating horizontally polarized light
required by the SLM. Next, there is a telescope consisting
of two lenses to expand the laser and fully utilize the SLM’s
active area. After reflection and modulation by the SLM, the
laser is focused onto the screen and the image is captured
by a camera (model: Basler ace, pixels: 2048 × 2448). A
screen photo of a resulting transverse laser beam manipula-
tion achieved with this setup is shown in Fig. 3. The zeroth
order diffraction (ZOD) visible on the image is undiffracted
light that does not interact with the CGH (specular reflec-
tion), resulting primarily from dead areas between pixels on
the SLM surface or window reflections. The zeroth order
should be less significant when working with the FLUTE
driving laser, which is inside the working range of the SLMs,
and can be further reduced or completely eliminated with
various methods [13].

Figure 2: Test setup for transverse laser manipulation with a
638 nm laser (1). The red line depicts the laser path. (2) Hor-
izontal polarization filter. (3, 4) 𝑓 = 150 mm, 𝑓 = 100 mm
lens. (5) Iris. (6) SLM. (7) 𝑓 = 500 mm lens. (8) Screen
with the camera behind.

Figure 3: Photo of the transversely shaped laser on the screen
of the test setup shown in Fig. 2. The zeroth order diffraction
is visible in the center.

Longitudinal Manipulation
Conventional longitudinal modulation methods, for ex-

ample using mechanical delay stages, allow only limited
manipulation of fs-scale ultra-short laser pulses, often not
sufficiently fast for intra-pulse modulation. A better and
common method utilizes the chirp of a laser pulse, i.e. the
correlation of time and wavelength. In this scheme, the
chirped pulse is first dispersed spectrally, for example with

a grating, then modulated in the spectral domain, and finally
reassembled. Due to the wavelength-time correlation, a ma-
nipulation in the spectral domain does directly influence the
time domain. Such a modulation can be achieved with a
4𝑓-system, where the modulation mask, here the SLM, is
located in the focal plane [6, 14, 15]. In our case, the laser
pulse is linearly chirped with a spectral range of 750 nm to
850 nm. The setup is shown in Fig. 4. The laser pulse passes
through a transmission optical grating with 600 lines/mm
where it is split-up according to the wavelength and focused
with a cylindrical lens 𝑓 = 250 mm in the horizontal plane
onto the SLM mask surface. The spectrogram on the SLM
can now be modified in phase and is then reflected back
passing through an identical cylindrical lens and an identical
transmission grating, where the divergence of the wavelength
spectrum is collimated.

Figure 4: Photo of the longitudinal laser manipulation setup.
The short dotted line represents 850 nm and the long dot-
ted 750 nm wavelength. (1,5) Transmission optical grating
600 lines/mm. (2,4) 𝑓 = 250 mm cylindrical lens. (3) SLM.

MACHINE LEARNING BASED CONTROL
To generate a laser pulse with an intensity pattern 𝑦target,

a CGH 𝒢(𝑦target) is calculated using the GS algorithm and
displayed on the SLM. The pulse, modulated by the SLM,
further propagates through the optical path 𝒫 to the image
plane and is captured with an intensity pattern 𝑦. Thus, the
forward mapping ℱ of the intensity patterns can be written
as a composite function of 𝒢 and 𝒫

𝑦 = ℱ(𝑦target) = 𝒫 ∘ 𝒢(𝑦target). (1)

The unknown optical propagation 𝒫 needs to be mod-
eled, so that the 𝑦target can be reproduced on the image plane.
However, learning the inverse process 𝒫−1 directly is diffi-
cult, as it requires the network to learn the Fourier transform
process. In the following we use an alternative route: train
a CNN to learn the inverse process ℱ−1 between the target
image and the image plane.

Network Structure
We use a network structure inspired by the U-Net, which is

originally used for image segmentation tasks [16]. As shown
in Fig. 5, the input image is first sequentially downsampled to
extract the features and then upsampled back to the original
resolution for the predictions. 𝐶 denotes the number of
the convolution channels and 𝑁2 is the pixel count. The
downsampling layers and upsampling layers of the same
depth are skip-connected to aid the training.
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Figure 5: Structure of the CNN. The network consists of
sequential downsampling and upsampling blocks, which are
skip-connected. 𝐶: numbers of the convolution channels;
𝑁2: resolution of the image; BN: Batch Normalization;
ReLu: Rectified Linear Unit activation.

The definitions of the network layers and blocks are as
follows: BN is a 2D batch normalization layer [17]; ReLu
is the rectified linear unit activation function; Conv(𝐾, 𝑆)
is the 2D convolution layer with kernel size 𝐾 and stride 𝑆;
TConv(𝐾, 𝑆) is the transposed 2D convolution layer. The
ConvSame block consists of a Conv(3,1) and a BN layer,
which changes the number of convolution channels and pre-
serves the pixel count. It is used for processing the input
image and predicting the output image. The ”Down” block
reduces the image resolution and increases the number of
channels 𝐶, whereas the ”Up” block does the opposite.

Training and Results
As a proof of principle experiment, we use the transverse

setup described above and train the network on images with
low pixel count 𝑁2 = 322. The number of the initial chan-
nels is set to 𝐶𝑖 = 16 and four downsampling layers are used,
corresponding to 256 channels at the deepest layer. The
training data is generated with images of handwritten digits
from the MNIST database [18]. First, the original image
with resolution of 282 is zero-padded to 322. Then a CGH
is calculated by the GS algorithm and displayed on the SLM
and the resulting laser image is captured. Lastly, the camera
image is cropped to the region of interest and re-scaled to the
same resolution as the target image 𝑁2 = 322. The network
is trained on 10,000 data pairs. We use Adam optimizer [19]
with an initial learning rate 0.001, a mini-batch size of 32
and maximum 100 epochs. The loss function is defined
as the mean squared error between the network-predicted
image and target image. The trained CNN is used to pro-
duce three input laser patterns (a): a digit, a Gaussian beam
and a flattop beam, as shown in Fig. 6. It is visible in (b)
that the network could learn the physical distortions and
attempts to suppress the zeroth order diffraction in the pre-
diction. Compared to the simple GS method results (f), the
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Figure 6: Experimental results of the laser shaping. (a) Tar-
get patterns/input of the CNN: digit (left), Gaussian (middle)
and flattop (right). (b) Output patterns of the CNN. (c) Holo-
grams corresponding to the CNN predictions and (d) the
camera-captured patterns. (e) GS-only holograms and (f)
the captured images.

shape results of the CNN-GS method (d) show somewhat
suppressed ZOD. It is expected that the modulation quality
can be further improved when using more pixels. The CNN
can easily be extended by adding more layers and changing
the number of convolution channels.

SUMMARY AND OUTLOOK
We achieved a proof-of-concept transverse laser shap-

ing setup, which is ready to be implemented in the 800 nm
driving laser of the FLUTE photoinjector. The CNN-based
method is experimentally demonstrated on this setup. The
setup for the longitudinal laser pulse manipulation is built
in a test environment. After further evaluation, both the
transverse and the longitudinal setup will be implemented in
the photoinjector laser path before the THG and conversion
to the UV range. The laser diagnostics such as the virtual
cathode and electron diagnostics such as the YAG:Ce screen
for the transverse beam shape will be used as feedback for a
ML-based control system to shape the electron bunches to
the needs of future experiments.
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