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Abstract
Photo injector design is an important consideration in the

construction of next generation accelerators. In current injec-
tor optimization, accelerator components (e.g. RF cavities)
are individually shape-optimized for performance subject
to general requirements such as peak surface field, shunt
impedance, and resonant frequency. Once these compo-
nents’ shapes are determined, beam dynamics simulations
optimize the injector lattice by adjusting parameters such
as the amplitude and phase of the driving fields. However,
this form of beam dynamics optimization is restricted by the
fixed geometrical shape and field profile of the components.

For a more general and unrestricted accelerator design
optimization, a coupled optimization of the cavity shape and
beam parameters is required. For this coupled optimization
problem, we have created an integrated ACE3P-IMPACT
workflow. Within this workflow, the geometries for a set
of components are adjusted, the field modes are then com-
puted with Omega3P, a module in the ACE3P suite, and
imported into IMPACT-T for beam dynamics simulation.
This workflow is encapsulated into a multi-objective opti-
mization algorithm using the DEAP [1] and libEnsemble [2]
Python libraries to yield a pareto-optimal set of solutions
for a simplified injector design model.

INTRODUCTION
In previous studies, optimization of accelerator compo-

nents and lattices have been done separately in a set of iso-
lated optimizations. For example, an RF photocathode cavity
can be designed around a target frequency, acceleration gra-
dient, and peak surface field. Once this cavity is optimized,
it’s design is held fixed when optimizing the next compo-
nent or the phases and amplitudes for an accelerating lattice
around other output parameters such as minimum bunch
length and transverse emittance.

While this form of sequential optimization may yield rea-
sonable results, it will optimize locally only on a subset of
the input parameter space at a time. By contrast, in end-to-
end global optimization, all input parameters ranging from
the photocathode shape parameters to the lattice phases and
amplitudes can be adjusted simultaneously. The global op-
timization of input parameters will always yield a solution
set of inputs at least as good as those obtained by sequential
optimization provided enough iterations.

We have developed a systematic integrated workflow man-
agement system, titled A3PI (ACE3P with Impact-T), writ-
ten in Python which interfaces various codes with genetic
algorithms and built-in parallelism to perform end-to-end
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global multi-objective optimization on high performance
computing (HPC) systems.

WORKFLOW OVERVIEW
Here we provide an overview of A3PI which manages

the workflow of tasks for optimization and interfaces the
component codes: Cubit [3], ACE3P [4, 5], and Impact-
T [6–8]. For example, A3PI can be used to automate a chain
of tasks such as: (1) run Cubit to generate the geometry
of an accelerator cavity, (2) run acdtool (a subprogram of
ACE3P) to convert the output mesh from Cubit to a format
suitable for ACE3P, (3) run Omega3P (a module of ACE3P)
to compute eigenmodes of the meshed geometry, (4) run
acdtool again to extract the modal fields on a Cartesian grid
for use in Impact-T, and (5) run Impact-T with the external
fields provided. This example of a single run is shown in
Fig. 1.

Thus, A3PI can encapsulate the workflow as a single
function evaluation where various parameters are the inputs
and the Impact-T particle data are the outputs. Depending on
the complexity of the desired workflow, the setup file of A3PI
can be quite long as it contains all necessary information to
run each code individually. However, A3PI is modular in
that if a given component code (e.g. Cubit) isn’t necessary,
it can be omitted in the setup file. The advantage to this
approach is that A3PI can use a parsing utility in Python to
replace necessary values for each input file automatically.
For example, if the length of a cavity is to change, then A3PI
can automatically replace the appropriate values in the Cubit
input file as well as the lattice section for Impact-T.

The A3PI tools also include post-processing MATLAB
[9] scripts to assist in visualizing the optimization process
including a interactive plot sliders and custom data tooltips
to quickly view the set of input parameters for any selected
individual. We also included visualization tools to further
investigate individual evaluations by importing field data,
mesh data, and/or particle data used in the varying compo-
nents of the A3PI workflow. These tools are interactive and
can be used to generate high-quality videos of optimizations
or Impact-T simulations. An example particle plot created
using an A3PI plotting tool is shown in Fig. 2.

MULTI-OBJECTIVE OPTIMIZATION
In the previous section, we discussed how to set up A3PI

to run a single chain of tasks for a given set of parameters.
The next step is to use this workflow as a black-box function
to optimize a set of input parameters with respect to desired
output quantities of interest. For the multi-objective opti-
mization, we use the DEAP [1] Python library to set up a
genetic algorithm; we opt to use NSGA-II but there are other
algorithms to choose from for various types of problems.
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Workflow Setup File

Global parameters
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• Eigenmode parameters
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• Lattice parameters

A3PI Single-Run Workflow 

Figure 1: Example layout of a setup of A3PI to run a chain
of tasks given a set of run parameters. The A3PI code will
automatically generate input files for the component codes
and run them sequentially.

Figure 2: In this demo from an injector simulation with
106 macro particles, 2000 particles are shown using the
A3PI particle plotting MATLAB script.

While we could simply wrap a multi-objective optimizer
around the A3PI workflow, if the individual workflow eval-
uations are costly, convergence to a Pareto front may take
a very long time. To further parallelize A3PI, we use the
libEnsemble [2] Python library to assist with the task dis-
tribution to multiple nodes in an HPC environment. One
particular challenge is that the tasks within the A3PI work-
flow may use varying amounts of resources: Omega3P in
particular has a large memory footprint to accurately solve
for eigenmode fields. Thus, by using libEnsemble, A3PI can
efficiently distribute tasks to computing resources for the
optimization cycle.

To set up A3PI for use with DEAP and libEnsemble, an
additional section is added to the A3PI setup file which
contains optimization parameters such as population size,
mutation parameters, etc. in addition to the libEnsemble-
specific options desired. When A3PI is called with these
additional settings, a manager process distributes a single-
run workflow, as in Fig. 1, to different "worker" folders for
parallel evaluation. The choice of input parameters from
the manager process is passed to each worker and the work-
flow is evaluated; the output quantities of interest from the
workers are then returned to the manager process for mu-
tation in choosing the next population generation. When
the desired convergence is achieved or a maximum number

of evaluations is performed, the manager process returns
the results of the optimization. An overview diagram of the
optimization hierarchy is shown in Fig. 3.

A3PI Optimization Workflow 

Single-Run 
Evaluations

Optimization 
Manager

A3PI Top Level 
Manager

A3PI 
Manager 
Process

LibEnsemble
Manager

A3PI Single-
Run 

Workflow

A3PI Single-
Run 

Workflow

A3PI Single-
Run 

Workflow

DEAP NSGA-
II OptimizerPopulation output

Population input

User-
specified 
Input File

Single Batch Run

…

Figure 3: Example layout of a setup of A3PI to run a chain
of tasks given a set of run parameters. The A3PI code will
automatically generate input files for the component codes.
Each single-run evaluation is performed in parallel while
the tasks within each run are sequential.

INJECTOR OPTIMIZATION EXAMPLE
To showcase the capability of A3PI, we use a toy-model

of an injector lattice consisting of a photocathode gun with
a movable cathode stalk (Fig. 4 (top)), a focusing solenoid,
and four standard 9-cell accelerating cavities (Fig. 4 (bot-
tom)). The input parameter space we optimize over is given
in Table 1. Other necessary simulation parameters such as
bunch charge or cavity RF power are either held fixed or
determined from the input parameters; some of these addi-
tional fixed parameters are given in Table 2. The ranges for
phase parameters were chosen after using A3PI in single-run
mode to determine a suitable range.

For the multi-objective optimization test, we set A3PI
to minimize the final transverse RMS emittance and bunch
length while maintaining the constraint that the beam energy
must be greater than 60 MeV. Such constraints are enforced
via a penalty scaling term to objectives.

Additionally, since all parameters except for 𝑑cathode are
only used by Impact-T, we can simplify the A3PI workflow
by using field interpolation. For this procedure, the Cubit
→ Convert Mesh → Omega3P → Extract Field Data task
chain is initially performed only 6 times to obtain field data
using 𝑑cathode = {0, 2, 4, 6, 8, 10 mm}. These field maps
are then used to construct approximate the fields at other
values of 𝑑cathode within the defined range. Thus a shortened
A3PI workflow can be set up for this model by replacing the
aforementioned task chain with a very fast field lookup and
interpolation routine.

While this interpolation shortcut introduces a small er-
ror in the optimization cycle, the Pareto-optimal parame-
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ters from the shortened workflow can be validated and re-
optimized by using the complete workflow for a few addi-
tional population generations.

To test the optimization model, we set the population size
to 128 individuals and ran an A3PI workflow for a total
of 50 generations with the NSGA-II optimizer. Each in-
dividual evaluation using the shorter interpolation-based
workflow takes approximately 1 minute on a KNL node on
Cori@NERSC, thus using 128 KNL nodes, this full opti-
mization can be completed in less than an hour. However,
when using the full task chain workflow, Omega3P generally
requires more CPU and memory resources than other tasks
and such that a single-run evaluation uses approximately
10 minutes with 10 KNL nodes. Therefore, it is not recom-
mended to use the full workflow until the population is close
to the Pareto-front; in our example, after 40∼50 generations.

As shown in Fig. 5, the individuals approach an approxi-
mate Pareto-optimal boundary after a few dozen generations.
Each individual reflects a choice of the 9 parameters given
in Table 1 which are then evaluated with the A3PI single-run
workflow; the output final transverse emittance and bunch
length are plotted.

Figure 4: (Top) Slice-view of model RF photocathode with
movable stalk. As the cathode depth 𝑑cathode increases, the
cathode can move inwards which changes the 𝐸𝑧 on-axis
field. (Bottom) Mesh geometry of one of the 9-cell 1.3 GHz
accelerating cavities using the A3PI mesh plotting utility.

CONCLUSION
Multi-objective optimization of an end-to-end accelera-

tor structure is an important aspect in the design of next-
generation particle accelerators. For this task, we created
A3PI, our novel integrated workflow manager written in
Python, to interface existing field and particle codes. We
have demonstrated this end-to-end optimization capability
with a test model injector but aim to use A3PI for a realistic
photoinjector model soon.

Table 1: Model Injector Input Parameters

Parameter Range Description
𝑑cathode 0 -10 mm Cathode stalk position
𝜃cathode 150 -170 deg Cathode driving phase
𝜎𝑥,𝑦 400 -800 µm Laser trans. spot size
𝜎𝑧 25 -40 µm Laser pulse length
𝐵solenoid 100 -200 mT Focusing sol. strength
𝜃accel1 280 -310 deg Accel. cavity 1 phase
𝜃accel2 280 -310 deg Accel. cavity 2 phase
𝜃accel3 280 -310 deg Accel. cavity 3 phase
𝜃accel4 280 -310 deg Accel. cavity 4 phase

Table 2: Model Injector Additional Parameters

Parameter Value Description
𝑞bunch 200 pC Electron bunch charge
𝜔cathode 200 MHz Cathode mode freq.
𝑊total 8.85 µJ Cath. cav. total energy∗
𝜔accel 1.3 GHz Accel. cavity freq.
𝐸𝑧,accel 30 MV/m Accel. cavity peak field

∗: Cathode 𝐸𝑧 field varies from 25∼45 MV/m with stalk position.

Figure 5: Best individuals at varying generations from the
NSGA-II multi-objective optimization of the A3PI injector
model.

Our future goals include adding compatibility of other
codes to A3PI, for example to enable optimization of storage
rings, and further improvements to the A3PI utilities in more
versatile computing environments.

ACKNOWLEDGMENTS
This work is supported by the Director of the Office of

Science of the US Department of Energy under contracts
DE-AC02-05-CH11231 and DE-AC02-76-SF00515.

REFERENCES
[1] F.-A. Fortin et al., “DEAP: Evolutionary Algorithms Made

Easy”, J. Mach. Learn. Res., vol. 13, pp. 2171–2175, Jul. 2012.

[2] Stephen Hudson et al., libEnsemble User Manual, Argonne
National Laboratory, USA, 2020,
https://libensemble.readthedocs.io/en/main/

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB221

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques

THPAB221

4225

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



[3] R. W. Quadros et al., The CUBIT Geometry & Meshing Toolkit,
Sandia National Laboratories, USA, 2021;
https://cubit.sandia.gov

[4] ACE3P (Advanced Computational Electromagnetics 3P) Code
Suite: https://portal.slac.stanford.edu/sites/
ard\_public/acd/

[5] L.-Q. Lee “A Parallel Finite-Element Eigenmode Analysis
Code for Accelerator Cavities”, SLAC, Menlo Park, USA,
Rep. SLAC-PUB-13529, Mar. 2009.

[6] J. Qiang, S. Lidia, R. Ryne, and C. Limborg-Deprey,
“Three-dimensional quasistatic model for high brightness
bream dynamics simulation”, Phys. Rev. ST Accel. Beams,

vol. 9, p. 044204, Apr. 2006. doi:10.1103/physrevstab.
9.044204

[7] J. Qiang et al., “High resolution simulation of beam dynamics
in electron linacs for x-ray free electron lasers”, Phys. Rev. ST
Accel. Beams, vol. 12, p. 100702, Oct. 2009.
doi:10.1103/physrevstab.12.100702

[8] J. Qiang, R. Ryne, S. Habib, and V. Decyk “An Object-Oriented
Particle-In-Cell Code for Beam Dynamics Simulation in Linear
Accelerators”, J. Comp. Phys., vol. 163, p. 434, 1999.
doi:10.1145/331532.331587

[9] MATLAB version 8.5.0.197613 (R2018a). The MathWorks
Inc., Natick, Massachusetts, United States.

12th Int. Particle Acc. Conf. IPAC2021, Campinas, SP, Brazil JACoW Publishing
ISBN: 978-3-95450-214-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2021-THPAB221

THPAB221C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

3.
0

lic
en

ce
(©

20
21

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

4226

MC5: Beam Dynamics and EM Fields

D11 Code Developments and Simulation Techniques


