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Abstract 
The design philosophy for a robust prototype lattice de-

sign for BESSY III, i.e., that is insensitive to small param-
eter changes, e.g. engineering tolerances – based on a 
higher-order-achromat, a la: SLS, NSLS-II, MAX IV, and 
SLS 2 – is outlined & presented. As usual, a well optimised 
design requires clear understanding of the end-user re-
quirements and close collaboration between the linear op-
tics designer and nonlinear dynamics specialist for a sys-
tems approach. 

INTRODUCTION 
Requirements 

Given the science case [1] and the trade-offs for control-
ling the corresponding linear optics [2], a set of prelimi-
nary, self-consistent requirements are summarised in 
Table 1. The energy spread is limited by not degrading the 
performance of high-end undulators (if e.g. damping wig-
glers are introduced to reduce the emittance). The on-mo-
mentum DA (dynamic aperture) is determined by the in-
jection system [3]. As usual, the Touschek lifetime is a 
challenge for medium-energy rings, i.e., it scales roughly 
with 𝛾ଷ. 

Table 1: Preliminary Requirements 
End User  
Circumference [m] 300 
Energy [GeV] 2.5 𝜀௫ [pmrad] 100 𝜎௦ [mm] (w/o harm. cav.) 2.5 𝜎ఋ 1e-3 𝛽௫,௬ [m] mid-straight [2.0, 2.0] 
Beam Dynamics  
On-Momentum DA [mm] [2.0, 1.5] 
Off-Momentum DA [%] 2.0+ 𝛼 1e-4 
Beam Lifetime [h] 1.0 

DESIGN PHILOSOPHY & PRINCIPLES 
Control of Linear Optics – LEGO 

In the mid-1970 Chasman & Green introduced what is 
now known as a (linear) double-bend-achromat (DBA) lat-
tice [4]. A synchrotron optimised for insertion devices 
[IDs] for synchrotron light production. A decade later this 

was generalised to a tripple-bend-achromat (TBA) [5]; and 
adopted for the ALS conceptual design [6]. A 12-cell TBA. 

Similarly, after a re-baselining of the initial design con-
cept – based on an academic pursuit of the theoretical min-
imum emittance cell (TME) [7] – i.e., for an idealised lat-
tice, not taking into consideration the impact of engineer-
ing tolerances (akin to e.g. the impact of noise for telecom 
systems) – the TBA cell was adopted for SLS as well but 
with short, medium and long straights. Hence, robust de-
sign for it required implementation of the first higher-or-
der-achromat (HOA) [8]. 

Contrarily, MAX IV – the first robust seven-BA – pur-
sued straights of the same length a priori, and (totally) ig-
nored TME, i.e., their unit cell is a x15 (!) away from it & 
the resulting chromaticity wall [9], and obtained a HOA 
with 4.5% momentum aperture (a requirement) [10]. Ra-
ther than following the beaten path, they transformed the 
design of a state-of-the-arts synchrotron light source into 
an engineering-science problem [11]; which they resolved 
by miniaturisation. This paradigm shift resulted in an in-
novative, streamlined, cost effective solution (e.g. concrete 
girders) for the inverse problem: to find a (robust) solution 
to the end users requirements. With most components & 
subsystems built-to-print by local industries; akin to LEGO 
block approach. Also, the facility uses heat pumps to re-
coup the heat from the 5 MW thermal plant [12]; vs. a cool-
ing tower to vent/waste it into the atmosphere. 

Not surprisingly, MAX IV’s introduction of disruptive 
technology(ies) – has prompted other facilities to upgrade; 
by rip-and-replace, vs. incremental upgrades. 

Additionally, reverse bends [13] have been introduced to 
go beyond the TME cell; i.e., a systems vs. reductionist ap-
proach.  

And – in hindsight, e.g. from lessons learnt [14] – a sys-
tematic approach for linear optics design has been pro-
vided [15]. 

Regarding the science case & linear optics design for 
BESSY-III, see [1, 2]. 

Control of Nonlinear Dynamics – Symmetry 
The early synchrotrons were designed as periodic struc-

tures by introducing a FODO cell for the basic LEGO 
block and repeating it 𝑁 times; i.e., a weekly focusing cell 
with two sextupole families for linear chromatic correc-
tion. Hence, due to the periodicity of the ring: 

1. systematic leading order resonances were su-
pressed, 

2. and the tune footprint as well; since, naively, it 
would scale with the number of sextupoles square 
vs. linearly; i.e., ሺ2𝑁ሻଶ → 2𝑁. 

For a first principles approach for the SLS conceptual 
design in the mid-1990s, two basic strategies for robust 
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design of the sextupole scheme were considered, both 
based on symmetry [16]: 

1. -I Transformer: introduce sextupole pairs separated 
by n · π phase advance in both planes. 

2. Higher-order-achromat: introduce a unit cell, repeat 
it four or more times to generate a super period, and 
adjust the total phase advance to n · 2π in both 
planes. 

The first approach is standard practice for collider de-
sign, e.g. ref. [17]. And has been generalised by introduc-
ing a dispersion bump [18]. However, because the nonlin-
ear effects only cancel on-momentum, it tends to yield in-
ferior momentum aperture vs. a HOA; due to systemati-
cally driven off-momentum terms. 

This becomes clear by a parametric representation of the 
Poincaré map for the -I transformer 𝑀 =  cosሺ𝜇 + 𝛿ሻ 𝛽 sinሺ𝜇 + 𝛿ሻ− sinሺ𝜇 + 𝛿ሻ𝛽௫ cosሺ𝜇 + 𝛿ሻ  

→ −1 −𝛽𝛿
𝛿𝛽 −1  + ሺ𝛿ଶሻ 

which systematically drives ℎଵଵଵ & ℎଵଵଵ, see poster; 
but this can be remedied by a 2-cell HOA [16]. 

Even so, while the approach is adequate for high-energy 
rings, the approach tends to provide unsatisfactory perfor-
mance for medium-energy rings; since Touschek lifetime 
scales roughly with 𝛾ଷ; i.e., for a given lifetime the re-
quired momentum aperture is reduced by 𝛾ଷ. 

The second method originates from spectrometer de-
sign [19]. In particular, a 2nd order achromat is obtained 
for 4 or more cells with 2 sextupole families; i.e., all the 
geometric & quadratic terms to 2nd order in the phase-
space coordinates ൣ𝑥,𝑝௫,𝑦,𝑝௬; 𝛿൧ are cancelled. 

By using the driving terms notation ℎ for the Lie 
generator ℎ in ref. [16] they can be interpreted as phasors. 
The Poincaré map for an n-cell super period with unit cell ℳୡୣ୪୪ = 𝒜ିଵℛ𝑒::𝒜 
is ℳ = ℳୡୣ୪୪ℳୡୣ୪୪ ⋯ℳୡୣ୪୪ = 𝒜ିଵ𝑒:ℛ:𝑒:ℛమ: ⋯𝑒:ℛ:ℛ𝒜 = 𝒜ିଵ𝑒:ℛାℛమା⋯ାℛା⋯:ℛ𝒜 
To leading order, the exponent is a geometric series which 
for a HOA cancels for the resonance driving terms ሺℛ + ℛଶ + ⋯+ ℛሻℎ = ℛℛିଵ

ୀ ℎ = ℛ 𝐼 − ℛ𝐼 − ℛ = 0 

i.e., the phase dependent term in h. Akin to how the 3 phas-
ors for a three-phase power system add up to null; a 3-cell 
HOA with 120 phase advance cancelling one driving 
term. 

Contrarily, the phase-independent terms – which gener-
ate the tune footprint – are systematically driven. As stated 
in the introduction, these are controlled by the N-fold peri-
odicity of the lattice with N super periods. 

As for control of the nonlinear dynamics for the real lat-
tice – i.e., including the impact of engineering tolerances 

(mechanical misalignments and random & systematic mul-
tipole errors) – akin to e.g. noise for telecom systems [16]: 
 To control the nonlinear dynamics, control the lin-

ear optics. 
 To control the linear optics, control the closed orbit; 

in the sextupoles, or else it will generate gradient 
errors from feed-down). 

Operating implementations of HOAs are: SLS [16], 
NSLS-II [20], and MAX IV [10]; and the now funded 
SLS 2 [14]. 

APPLICATION TO BESSY-III 
Baseline Lattice 

Preliminary explorations of the provided linear optics 
options, related constraints, and trade-offs [2] – when add-
ing the constraints for a HOA – converged into a 16-cell 6-
BA prototype lattice – with unit cell tune ത୳ୡ = ሾ0.4,0.1ሿ 
& തୱ୮ = ሾ2.75, 0.75ሿ for the super period, see Fig. 1 – 
which delivers on the end user requirements, see [1] (the 
current benchmark is for 𝜀௫ = 150 pmrad; but is tunea-
ble). In conclusion, that in conjunction provides good con-
trol of both the linear optics & nonlinear dynamics. 

 
Figure 1: Linear optics for one super period. 

Benchmarks 
Standardised benchmarks for the prototype real lattice – 

i.e., including the impact of engineering tolerances (me-
chanical misalignments and random & systematic multi-
pole errors) comprising of: 
 Linear chromatic control; good separation of the 2 

chromatic sextupole families. 
 Cancellation of the chromatic & geometric resonance 

driving terms for super period. 
 Tune footprint for super period, Fig. 2. 
 Control of closed orbit (100 random seeds). 
 Control of linear optics; fine tuning of individual quad-

rupoles based on LOCO (linear optics from closed or-
bits). 

 On & off-momentum frequency maps for real lattice, 
Fig. 3. 

 On & off-momentum DA for real lattice (20 random 
seeds), Fig. 4. 
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which are included for the poster. The estimated on & off-
momentum DA from the tune footprint is (for ∆ = 0.1): 𝐴ሾ3.0, 2.5ሿ mm & 𝛿 = 2.0 %; which is validated by the 
benchmarks for the real lattice. 
Remark: the working point has not (yet) been optimised. 

 
Figure 2: Control of on & off-momentum tune footprint. 

In conclusion, a robust baseline lattice design has been 
established; with only two (chromatic) sextupole families, 
so far. Hence, the next step is to introduce two chromatic 
octupole families to reduce the off-momentum tune foot-
print. 

CONCLUSIONS 
The design philosophy for a robust prototype lattice de-

sign for BESSY III, based on a higher-order-achromat has 
been outlined & presented. The design has been validated 
by standardised benchmarks which includes the impact of 
engineering tolerances (mechanical misalignments and 
random & systematic multipole errors) that meets the 
stated requirements. 

As usual, a well optimised design requires a clear state-
ment of the end-user requirements and close collaboration 
between the linear optics designer and nonlinear dynamics 
specialist for a systems approach. 

 

 

 

Figure 3: On and off momentum frequency maps for real 
lattice (see poster). 

 

Figure 4: Control of on & off-momentum dynamic aper-
ture, 𝛽 = ሾ2.3, 2.5ሿ m (20 seeds). 
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