MOXB —  Monday Oral Parallel B   (24-May-21   11:30—12:00)
Chair: F. Sannibale, LBNL, Berkeley, California, USA
Paper Title Page
MOXB01
Progress Towards Realisation of Steady-State Microbunching at the Metrology Light Source  
 
  • J. Feikes, A. Kruschinski, J. Li, A.N. Matveenko, Y. Petenev, M. Ries
    HZB, Berlin, Germany
  • A. Chao
    SLAC, Menlo Park, California, USA
  • X.J. Deng, W.-H. Huang, C.-X. Tang, L.X. Yan
    TUB, Beijing, People’s Republic of China
  • A. Hoehl, R. Klein
    PTB, Berlin, Germany
 
  Coherent radiation is a powerful scheme for storage-ring-based synchrotron radiation sources as its intensity increases with the square of the number of radiating electrons. Formation of bunches or sub-bunches shorter than the radiation wavelength, i.e., microbunching, is necessary for the radiation from different electrons to add in phase and therefore cohere. Recently at the MLS it has been shown that in dedicated isochronous optics an electron beam energy modulation induced by an externally applied 1064-nm-wavelength laser in an undulator leads to the formation of sub-um microbunches one turn later*, providing the basis for the implementation of steady-state microbunching in electron storage rings to generate high-repetition, high-power coherent radiation. Here we report on the recent progress and continuing development of this experiment.
Deng, X., Chao, A., Feikes, J. et al. Experimental demonstration of the mechanism of steady-state microbunching. Nature 590, 576-579 (2021). https://doi.org/10.1038/s41586-021-03203-0
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOXB02 First Results of the IOTA Ring Research at Fermilab 19
 
  • A. Valishev, D.R. Broemmelsiek, A.V. Burov, K. Carlson, B.L. Cathey, S. Chattopadhyay, N. Eddy, D.R. Edstrom, J.D. Jarvis, V.A. Lebedev, S. Nagaitsev, H. Piekarz, A.L. Romanov, J. Ruan, J.K. Santucci, V.D. Shiltsev, G. Stancari
    Fermilab, Batavia, Illinois, USA
  • A. Arodzero, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, California, USA
  • D.L. Bruhwiler, J.P. Edelen, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • S. Chattopadhyay, S. Szustkowski
    Northern Illinois University, DeKalb, Illinois, USA
  • A. Halavanau, Z. Huang, V. Yakimenko
    SLAC, Menlo Park, California, USA
  • M. Hofer
    TU Vienna, Wien, Austria
  • M. Hofer, R. Tomás García
    CERN, Geneva, Switzerland
  • K. Hwang, C.E. Mitchell, R.D. Ryne
    LBNL, Berkeley, California, USA
  • K.-J. Kim
    ANL, Lemont, Illinois, USA
  • K.-J. Kim, Y.K. Kim, N. Kuklev, I. Lobach
    University of Chicago, Chicago, Illinois, USA
  • T.V. Shaftan
    BNL, Upton, New York, USA
 
  Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The IOTA ring at Fermilab is a unique machine exclusively dedicated to accelerator beam physics R&D. The research conducted at IOTA includes topics such as nonlinear integrable optics, suppression of coherent beam instabilities, optical stochastic cooling and quantum science experiments. In this talk we report on the first results of experiments with implementations of nonlinear integrable beam optics. The first of its kind practical realization of a two-dimensional integrable system in a strongly-focusing storage ring was demonstrated allowing among other things for stable beam circulation near or at the integer resonance. Also presented will be the highlights of the world’s first demonstration of optical stochastic beam cooling and other selected results of IOTA’s broad experimental program.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOXB02  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOXB03
Copper Based Radio Frequency Structures: Are We at the End of Road for This Technology?  
 
  • S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Department of Energy contract DE-AC03-76SF00515.
We will present an overview of recent advances in high gradient copper structures operating at room temperature and at cryogenic temperature. We will include the advances that enabled us to understand better the underlying fundamental physics that govern the breakdown phenomena in high field vacuum structures. We will then present the recent advances in linac topologies that take advantage of this basic understanding of the breakdown phenomena. We will also showcase how these advances are being utilized for many different medical, industrial, and discovery machines. Our presentation will not be limited to electron accelerators but will also include advances for high gradient hadron linacs.
 
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)