MC1: Circular and Linear Colliders
T12 Beam Injection/Extraction and Transport
Paper Title Page
WEPAB019 RF Harmonic Kicker R&D Demonstration and Its Application to the RCS Injection of the EIC 2632
 
  • G.-T. Park, M.W. Bruker, J.M. Grames, J. Guo, R.A. Rimmer, S.O. Solomon, H. Wang
    JLab, Newport News, Virginia, USA
 
  The Rapid Cycling Synchrotron (RCS) of the Electron-Ion Collider (EIC) at Brookhaven National Laboratory (BNL) * is an accelerating component of the electron injection complex, which provides polarized electrons in electron-ion collisions in the main Electron Storage Ring (ESR). We present the injection scheme into the RCS based on an ultra-fast harmonic kicker, whose "five odd-harmonic modes" prototype was developed in the context of the Jefferson Lab EIC (JLEIC) conceptual design **. In its early stage of R&D, the sharp (~3 ns width) waveform construction, beam dynamics, and pulsed power operation with short ramping time (~10 us) will be discussed together with the fabrication work of the JLEIC prototype ***.
* BNL, "Electron Ion Collider Conceptual Design Report", 2020
** G. Park et. al, JLAB-TN-044
*** G. Park et. al., JLAB-TN-046
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB019  
About • paper received ※ 17 May 2021       paper accepted ※ 22 June 2021       issue date ※ 11 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB031 Dump Line Layout and Beam Dilution Pattern Optimization of the Future Circular Collider 3815
 
  • B. Facskó, D. Barna
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Lechner, E. Renner
    CERN, Geneva, Switzerland
 
  To avoid any damage to the beam dump target in the Future Circular Collider, the beam will be swept over its surface using oscillating kickers in the x/y planes with a 90-degree phase difference, and an amplitude changing in time, creating a spiral pattern. The ideal pattern must have an increasing spiral pitch towards smaller radii to produce an even energy deposition density. We recommend the realization of the optimal pattern using two beating frequencies. This method enables a flat energy deposition density while only using simple independent damped oscillators. In this poster, we also present the study of the beamline optics and hardware that can realize the needed pattern. Two different possible hardware layouts were examined and optimized as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB031  
About • paper received ※ 19 May 2021       paper accepted ※ 28 July 2021       issue date ※ 18 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)