Author: Zhang, K.Q.
Paper Title Page
TUPAB072 The Status of a Grating Monochromator for Soft X-Ray Self-Seeding Experiment at SHINE 1532
 
  • K.Q. Zhang
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, C. Feng, B. Liu, T. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  The research status of a grating monochromator for soft X-ray self-seeding experiment at SHINE has been presented in this paper. The monochromator system includes the vacuum cavity, optical elements, and mechanical movement devices. Until now, the vacuum cavity has finished the manufactured process completely, the optical mirrors have finished machining and measured by the longitudinal trace profiler (LTP) and atomic force microscope (AFM). To make sure the monochromator system can achieve an optical resolution of 1/10000 at the photon energy of 700-1300eV, the system has been integrated and tested recently. In this year, the previous online experiment will be performed in the shanghai soft X-ray free-electron laser (FEL) user facility.  
poster icon Poster TUPAB072 [0.717 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB072  
About • paper received ※ 11 May 2021       paper accepted ※ 09 June 2021       issue date ※ 01 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB073 The Design of EEHG Cascaded Harmonic Lasing for SXFEL User Facility 1536
 
  • K.Q. Zhang, C. Feng
    SSRF, Shanghai, People’s Republic of China
  • H.X. Deng, B. Liu, T. Liu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
 
  The preliminary design and simulation results of EEHG cascaded harmonic lasing for the SXFEL user facility have been presented in this paper. Using the basic seeded beamline of the SXFEL user facility, the designed parameters are optimized to obtain full coherent FEL output at the 90th harmonic of a 265 nm seed laser. According to the designed parameters and the layout of the SXFEL user facility, the detailed simulations are carried out, the results show that the seeded beamline of the SXFEL user facility can generate 2.93 nm full coherent radiation by the proposed method, which indicates that the method can extend the photon energy range of a seeded FEL and the method can be achieved at the SXFEL user facility.  
poster icon Poster TUPAB073 [0.955 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB073  
About • paper received ※ 11 May 2021       paper accepted ※ 10 June 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)