Paper | Title | Page |
---|---|---|
MOPAB138 | Dielectric Wakefield Acceleration with a Laser Injected Witness Beam | 481 |
|
||
Funding: Work supported by DOE grant DE-SC0017690 The plasma photocathode concept, whereby a two-species gas mixture is used to generate a beam -driven accelerating wakefield and a laser-ionized generation of a witness beam, was recently experimentally demonstrated. In a variation of this concept, a beam-driven dielectric wakefield accelerator is employed, filled with a neutral gas for laser-ionization and creation of a witness beam. The dielectric wakefields, in the terahertz regime, provide comparatively modest timing requirements for the injection phase of the witness beam. In this paper, we provide an update on the progress of the experimental realization of the hybrid dielectric wakefield accelerator with laser injected witness beam at the Argonne Wakefield Accelerator (AWA), including engineering considerations for gas delivery, and preliminary simulations. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB138 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 17 June 2021 issue date ※ 31 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB097 | Initial Nanoblade-Enhanced Laser-Induced Cathode Emission Measurements | 2814 |
|
||
Funding: This work was supported by the Center for Bright Beams, National Science Foundation Grant No. PHY-1549132 and DOE HEP Grant DE-SC0009914 Nanostructured photocathodes offer a unique functionality not possible in traditional photocathodes, increasing beam brightness by reducing the effective emission area. Inspired by field emitter tips, we examine a possible extension for higher current operation, an extended nanoblade capable of producing asymmetric emittance electron beams. A full understanding of emission is necessary to establish the effectiveness of nanoblades as usable cathode for electron accelerators. Utilizing wet etching of silicon wafers, we arrive at a robust sample capable of dissipating incident laser fields in excess of 20 GV/m without permanent damage. Initial predictions and experiments from the nanotip case predict energies up to the keV scale from electron rescattering and fine features on the order of the photon quantum. We will present initial electron data from 800 nm Ti:S laser illumination and measurements of a focused 1 keV beam. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB097 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 24 June 2021 issue date ※ 15 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB344 | Magneto-Optical Trap Cathode for High Brightness Applications | 4466 |
|
||
Funding: This work was performed with support of the US Department of Energy under Contract No. DE-SC0020409 and the National Science Foundation under Grant No. PHY-1549132 Electron bunches extracted from magneto-optical traps (MOTs) via femtosecond photo-ionization and electrostatic acceleration can have significantly lower transverse emittance than emissions from traditional metal cathodes. Such MOT cathodes, however, have two drawbacks: the need for multiple trapping lasers and the limit to ~MV/m fields. Designs exist for MOTs which only require one trapping laser. Our RF simulations in High-Frequency Structure Simulator (HFSS) indicate that the cone MOT is the only one compatible with high gradient RF cavities. We present the combination of the two, an RF cavity with a cone-MOT as part of its geometry. It only requires one trapping laser and can use much higher fields. The geometry of the chamber is compatible with a wide range of MOT species, which allows the search for one which is compatible with copper cavities. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB344 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 29 July 2021 issue date ※ 12 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |