Paper |
Title |
Page |
TUPAB186 |
Longitudinal Dynamics in the Prototype vFFA Ring for ISIS2 |
1834 |
|
- D.J. Kelliher, J.-B. Lagrange, S. Machida, C.R. Prior, C.T. Rogers
STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
- A.P. Letchford, J. Pasternak
STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
- J. Pasternak
Imperial College of Science and Technology, Department of Physics, London, United Kingdom
- E. Yamakawa
JAI, Egham, Surrey, United Kingdom
|
|
|
A vertical Fixed Field Accelerator (vFFA) is a candidate for a future high-power (MW-class) spallation source at ISIS. In order to assess the feasibility of this novel ring, a prototype is currently being designed. Here we consider the longitudinal dynamics in the prototype ring. A key requirement of future neutron spallation sources is flexibility of operation to best serve multiple target stations. Beam stacking allows a rapid cycling, high intensity machine to operate at lower repetition rates but with higher peak output. Here we show how beam stacking can be realised in the vFFA while minimising the peak RF voltage required.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB186
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 17 June 2021 issue date ※ 23 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAB208 |
FETS-FFA Ring Study |
1901 |
|
- J.-B. Lagrange, D.J. Kelliher, A.P. Letchford, S. Machida, C.R. Prior, C.T. Rogers
STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
- S.J. Brooks
BNL, Upton, New York, USA
- C. Brown
Brunel University, Middlesex, United Kingdom
- J. Pasternak
STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
- J. Pasternak
Imperial College of Science and Technology, Department of Physics, London, United Kingdom
- E. Yamakawa
JAI, Egham, Surrey, United Kingdom
|
|
|
ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK, providing a proton beam with a power of 0.2~MW. Detailed studies are under way for a major upgrade, including the use of Fixed Field alternating gradient Accelerator (FFA). A proof-of-principle FFA ring, called FETS-FFA is planned to investigate the feasibility of this kind of machine for the required MW beam power. This paper discusses the study of the FETS-FFA ring case.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB208
|
|
About • |
paper received ※ 19 May 2021 paper accepted ※ 08 July 2021 issue date ※ 14 August 2021 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|