Paper | Title | Page |
---|---|---|
MOXB02 | First Results of the IOTA Ring Research at Fermilab | 19 |
|
||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. The IOTA ring at Fermilab is a unique machine exclusively dedicated to accelerator beam physics R&D. The research conducted at IOTA includes topics such as nonlinear integrable optics, suppression of coherent beam instabilities, optical stochastic cooling and quantum science experiments. In this talk we report on the first results of experiments with implementations of nonlinear integrable beam optics. The first of its kind practical realization of a two-dimensional integrable system in a strongly-focusing storage ring was demonstrated allowing among other things for stable beam circulation near or at the integer resonance. Also presented will be the highlights of the world’s first demonstration of optical stochastic beam cooling and other selected results of IOTA’s broad experimental program. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOXB02 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 02 July 2021 issue date ※ 23 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB137 | Interaction Region Design for DWA Experiments at FACET-II | 478 |
|
||
Funding: DOE HEP Grant DE-SC0009914 The extremely intense beam generated at FACET-II provides the unique opportunity to investigate the effects of beam-driven GV/m fields in dielectrics exceeding meter-long interaction lengths. The diverse range of phenomena to be explored, such as material response in the terahertz regime, suppression of high-field pulse damping effects, advanced geometry structures, and methods for beam break up (BBU) mitigation, all within a single UHV vacuum vessel, requires flexibility and precision in the experimental layout. We present here details of the experimental design for the dielectric program at FACET-II. Specifically, consideration is given to the alignment of the dielectric structures due to the extreme fields associated with the electron beam, as well as implementation of electron beam and Cherenkov radiation-based diagnostics. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB137 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 17 August 2021 issue date ※ 29 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB071 | Physics Goals of DWA Experiments at FACET-II | 3922 |
|
||
Funding: This work supported by DOE HEP Grant DE-SC0009914, The dielectric wakefield acceleration (DWA) program at FACET produced a multitude of new physics results that range from GeV/m acceleration to the discovery of high field-induced conductivity in THz waves, and beyond, to a demonstration of positron-driven wakes. Here we review the rich program now developing in the DWA experiments at FACET-II. With increases in beam quality, a key feature of this program is extended interaction lengths, near 0.5 m, permitting GeV-class acceleration. Detailed physics studies in this context include beam breakup and its control through the exploitation of DWA structure symmetry. The next step in understanding DWA limits requires the exploration of new materials with low loss tangent, large bandgap, and improved thermal characteristics. Advanced structures with photonic features for mode confinement and exclusion of the field from the dielectric, as well as quasi-optical handling of coherent Cerenkov signals is discussed. Use of DWA for laser-based injection and advanced temporal diagnostics is examined. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB071 | |
About • | paper received ※ 25 May 2021 paper accepted ※ 28 July 2021 issue date ※ 22 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB270 | Pair Spectrometer for FACET-II | 4336 |
|
||
Funding: DARPA GRIT Contract 20204571, DOE HEP Grant DE-SC0009914 We present the design of a pair spectrometer for use at FACET-II, where there is a need for spectroscopy of photons having energies up to 10 GeV. Incoming gammas are converted to high-energy positron-electron pairs, which are then subsequently analyzed in a dipole magnet. These charged particles are then recorded in arrays of acrylic Cherenkov counters, which are significantly less sensitive to background x-rays than scintillator counters in this case. To reconstruct energies of single high-energy photons, the spectrometer has a sensitivity to single positron-electron pairs. Even in this single-photon limit, there is always some low-energy continuum present, so spectral deconvolution is not trivial, for which we demonstrate a maximum likelihood reconstruction. Finally, end-to-end simulations of experimental scenarios, together with anticipated backgrounds, are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB270 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 28 July 2021 issue date ※ 18 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |